P-3-20

Determining the Gate-Finger Width for the Minimum Gate Resistance in RF MOSFETs

Yongsang Jeong¹, In Man Kang², Jeahong³ Lee, and Hyungcheol Shin⁴

1,2,3,4 Semiconductor Materials and Devices Laboratory
Seoul National University, Dept. of Electronics. School of Eng.
Sillim-dong, Gwanak-gu, Seoul, Korea

1Phone: +82-2-880-7282 E-mail: jijon25@snu.ac.kr

1. Introduction

Owing to the importance of considering gate resistance (R_g) for radio-frequency (RF) and noise modeling, several studies have been reported to determine its value [1]-[9]. It has been known that the advanced R_g model by considering the distributed effect of the gate electrode and non-quasi-static effect in the channel is necessary to describe accurately the RF behavior of MOSFETs [1]-[4].

To understand and find the optimum gate-finger width (W_f) specially related to the distributed gate electrode resistance (R_{ele}) which includes both gate silicide resistance (R_{sh}) and silicide-to-polysilicon contact resistance (ρ_{cnt}) , the analysis with extra test structures or simulation has been performed in [3]-[6]. Because of some difficulty in distinguishing between R_{sh} and ρ_{cnt} , it required special test vehicle and complicated structures [5], [6].

In this paper, we extracted both R_{sh} and ρ_{cnt} directly with 65-nm technology in RF MOSFETs and compared them with results of 130nm technology. The optimum finger width was obtained by analytical equation for NMOSFETs and PMOSFETs.

2. Experiments and model

The *S*-parameters of 65-nm dual gate RF MOSFETs with Ni-salicided polysilicon were measured at a frequency range from 100 MHz to 50 GHz to obtain the y-parameters and were de-embedded with a two step (open and short) procedure. Extrinsic device components such as source/drain resistance and substrate related parameters were extracted and de-embedded. To obtain R_g , $\text{Re}(Y_{11})/(\text{Im}(Y_{11}))^2$ is used and it is based on the y-parameter analysis of high frequency MOSFET equivalent circuit [7], [8]

 R_g is independent of frequency but is sensitive to bias. Extracted R_g approaches R_{ele} at high V_{gs} because resistance in channel (R_{ch}) decreases to zero [7], [8]. Thus, R_{ele} was obtained from R_g measured at high V_{gs} and low V_{ds} .

 R_{ele} which has multiple-fingers and contacts on both sides of the gate consists of several parts [1]:

$$R_{ele} = \frac{R_{sh}}{12} \frac{W_f}{L \times N_f} + \frac{R_{sh}}{2} \frac{W_{ext}}{L \times N_f} + \frac{1}{2} \frac{R_{via}}{N_{via} \times N_f} + \frac{\rho_{cnt}}{W_f \times L \times N_f} + R_{ext}$$
(1)

where R_{sh} is the silicide sheet resistance, L is gate length, W_f is the unit finger width, W_{ext} is extrinsic poly silicide beyond active region, ρ_{cnt} is the specific contact resistivity between silicide and polysilicon layers, N_f is the number of fingers in unit finger, R_{via} is the resistance of a metall-to-polysilicon via, N_{via} is the number of vias per unit finger, and R_{ext} is external resistance without dependence on N_f . The vertical structure through A to B line in Fig. 1(a) is shown in Fig. 1(b) which illustrates R_{sh} and ρ_{cnt} .

3. Results and discussion

At first, R_{ele} was obtained for different number of fingers (N_f = 16, 30, and 48) when W_f is 0.8 µm, W_{ext} is 0.17 µm, and N_{via} is 1.4. With them, R_{ext} in eq. (1) was extracted because it had no dependence on N_f and the extracted value was 0.01 Ω as shown in Fig. 2. Both R_{sh} and ρ_{cnt} were also obtained by extracting R_{ele} with MOSFETs which has different unit finger width (W_f = 1.6 and 3.2). The values of R_{sh} and ρ_{cnt} were 9.5 Ω /sq and 15.7 Ω µm² in NMOSFETs, whereas those in PMOSFETs were 10.4 Ω /sq and 28.7 Ω µm², respectively. Those differences between NMOSFETs and PMOSFETs are mainly due to the difference in the polysilicon doping concentration and silicide profile.

The contact resistivity ρ_{cnt} is high as much as it can not be ignored and depends only on total width and length of device in eq. (1). With the scaling-down of the minimum design rule, the interface resistance between the silicide and the polysilicon layers will be more important in R_{ele} and cannot easily be reduced without alternative gate materials or structures such as metal gates [10].

Similarly, we can understand the W_f dependence of R_{ele} in NMOS in Fig. 3. As W_f decreases, R_{poly} becomes higher because the 4th term (ρ_{cnl}) in eq. (1) dominates. As W_f increases, R_{ele} eventually increases because the 1st term (R_{sh}) in eq. (1) dominates. The optimum finger width can be obtained by equating the two terms.

$$W_f \Big|_{OPT} = \sqrt{12\rho_{cnt} / R_{sh}} \tag{2}$$

In this work, the optimum finger width is 4.5 μ m in NMOSFETs whereas it is 5.8 μ m in PMOSFETs. The larger optimum finger width of PMOSFETs is mainly due to the higher ρ_{cnt} in PMOSFETs, which comes from smaller doping concentration. For 65nm and 130nm technology with N/PMOSFETs with different N_f , the R_{poly} model and

measurement shows a good agreement as shown in Fig. 4. R_{elec} was lower in 130nm technology than in 65nm technology because Co-salicided polysilicon process was used in 130nm while No-salicided polysilicon process was used and there were the differences of materials, silicide thickness and thermal budget. For 130nm technology, R_{sh} and ρ_{cnt} were 3.8 Ω /sq and 2.4 Ω µm² in NMOSFETs, whereas those in PMOSFETs were 5.0 Ω /sq and 6.1 Ω µm².

4. Conclusion

In this paper, we propose the method of extracting R_{sh} and ρ_{cnt} directly in both n-type and p-type RF MOSFETs without extra patterns or simulations. Also, the gate electrode resistance model is verified with measured values for 65nm and 130nm technology. Optimum gate finger width was obtained using simple equation. The optimum finger width was larger in PMOSFETs than in NMOSFETs.

Acknowledgment

This work was supported by the MIC(Ministry of Information and Communication), Korea, under the ITRC(Information Technology Research Center) support program supervised by the IITA(Institute of Information Technology Advancement) (IITA-2006-C109006030030).

References

- [1] J. Tao, A. Rezvani, and P. Findley, *Pro. 7th Int. Conf. Solid-state and integrated circuits technology*, (2004) 159.
- [2] Y. Cheng, and M. Matloubian, *IEEE Electron Devices Lett.*, (2001) 22.
- [3] A. Scholten. L. F. Tiemeijer, R. Langevelde, R. J. Havens, A. T. A. Z. Duijnhoven, and V. C. Venezia, *IEEE Trans. Electron Devices*, (2003) 618
- [4] X. Jin, J. Ou, C. Chen, W. Liu, M. J. Deen, P. R. Gray, and C. Hu, *IEDM Tech. Dig.*, (1998) 961.
- [5] A. Litwin, *IEEE Trans. Electron Devices*, (2001) 2179.
- [6] D. K. Schroder, Semiconductor Material and Device Characterization. New York: Wiley-Interscience, (2006) 135.
- [7] M. Kang, I. Kang, and H. Shin, Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (2006) 218.
- [8] M. Kang, I. Kang, and H. Shin, Proc. IEEE Int. Conf. Silicon Monolithic Integrated Circuits in RF Systems, (2005) 207.
- [9] A. Nakamura, N. Yoshikawa, T. Mivazako, T. Oishi, A. Ammo and K. Takeshita, *IEEE RFIC Symposium*, (2006) 419.
- [10] Y. Ma. D. R. Evans, T. Nguyen, Y. Ono, and S. T. Hsu, *IEEE Electron Devices Lett.*, (1999) 254.

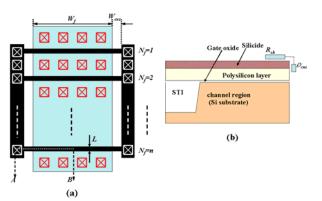


Fig. 1. (a) Schematic layout of multiple-finger, showing and (b) cross section of the polysilicon gate through the line A-B in (a), showing the silicide sheet resistance and silicide-to-polysilicon interface resistivity.

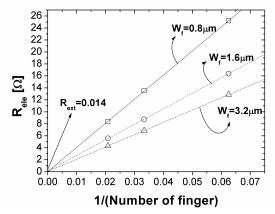


Fig. 2. Extracted value of R_{ext} with varying the number of fingers $(1/N_f)$ for different W_f .

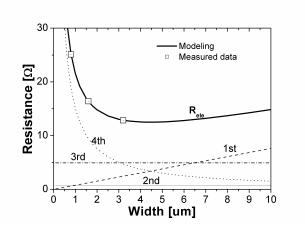


Fig. 3. Curves of R_{ele} versus W_f in 65nm NMOS (N_f =16), which show the value of all components in (1). A significant increase in R_{ele} can be seen with narrower W_f because the 4th term (ρ_{cnl}) dominates R_{ele} while R_{ele} with wider W_f also is increased because the 1st term (R_{sh}) dominates R_{ele} . W_f having the minimum R_{ele} is 4.5 µm in NMOS.

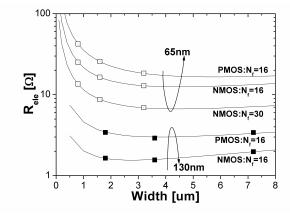


Fig. 4. Curves of R_{ele} versus W_f with varying multiple fingers in both NMOS and PMOS. W_f for 65nm technology has minimum R_{ele} at 4.5 μ m in NMOS and 5.8 μ m in PMOS, whereas W_f has minimum R_{ele} at 2.8 μ m in NMOS and 3.7 μ m in PMOS for 130nm technology.