Vanadium Dioxide Films Deposited on SiO₂- and Al₂O₃-coated Si Substrates Using Reactive RF-Magnetron Sputter Deposition Technique

Sun Jin Yun, Jung Wook Lim, Byung-Gyu Chae, and Hyun-Tak Kim

Terahertz Devices Team, Electronics and Telecommunications Research Institute 161 Gajung-Dong, Yusong-Gu, Daejon, 305-350, Korea Phone: +82-42-860-5821 E-mail:sjyun@etri.re.kr

1. Introduction

Vanadium dioxide (VO₂) has been known as a Mottinsulator showing an abrupt metal-insulator transition (MIT) near 68° C [1]. The metallic high-temperature phase of VO₂ is tetragonal, whereas its insulating phase is monoclinic. It has recently been reported that the MIT temperature can be varied by applying electric field or by irradiating infrared light [2]. The variability provides a large potential to MIT materials, such as VO₂, for programmable thermal or photo sensors.

The earlier works reported that VO₂ films deposited by pulsed laser deposition (PLD) method revealed superior quality compared to the films deposited by other techniques [3]. However, PLD is not appropriate for manufacturing practical devices on a large area substrate. RF-magnetron sputter deposition technique is considered as one of the most promising techniques for large-area uniform deposition with high packing density and strong adhesion to underlying layer. The use of Si wafer as substrate is also very useful for cost-effective fabrication of sensors. However, VO₂ films deposited on amorphous SiO₂-coated Si substrate have been known to show inferior quality to that deposited on a single crystalline sapphire substrate. Therefore, it is required to develop a sputter deposition process of VO2 films on amorphous films for the production of commercial sensor devices.

In the present work, the deposition of VO₂ film on Si wafer coated with a thermally grown amorphous-SiO₂ film (SiO₂/Si) or amorphous Al₂O₃ film (Al₂O₃/Si) was investigated using reactive RF-magnetron sputter deposition technique. The VO₂ film quality sensitively depends on the oxidation environment during deposition. In this work, the effect of operating pressure, that is one of process parameters governing oxidation ambient, on the film quality was evaluated to obtain VO₂ films showing abrupt MIT behavior. The dependence of film characteristics on the underlying layer was also investigated.

2. Experiments

The SiO₂ film was formed on Si wafer by thermal oxidation at 925° C and amorphous Al₂O₃ film on Si was deposited at 150°C using plasma-enhanced atomic layer deposition (PEALD) technique. The reactive sputter deposition of VO₂ films was carried out using V-metal

target of 4-inch diameter (99.9%, Kojyundo Kagaku) in the atmosphere of O_2 gas mixed with Ar. The O_2 gas fraction was 12.3 %, and the operating pressure was varied from 2 to 30mtorr. The RF power was 300W. During deposition, the substrate was rotated for uniform deposition and heated by IR-lamps. The films were post-annealed at 490°C with O_2 flow rate of 50 sccm and pressure of 30 mtorr. The thickness of VO₂ films was approximately 110 nm. The resistance was measured by standard four-point probe method.

3. Results and Discussion

Although VO₂ film easily coexists with and is converted to different vanadium oxides, such as V₂O₃, V₂O₅, and V₃O₇ etc., only VO₂ reveals MIT at 68°C. Therefore, MIT characteristics, such as abruptness and magnitude of resistance change near 68°C, have been considered to be measures of VO₂ film quality.

First, the resistance (R) of VO₂ films fabricated on SiO₂/Si was measured with increasing temperature (T), and a typical R-T curve showing abrupt resistance change near 68°C is illustrated in Fig. 1(a). The film was deposited at a deposition temperature (T_s) of 400°C with the pressure of 5 mtorr and post-annealed at a annealing temperatue (T_a) of 490°C. The R-T curve in Fig. 1(a) demonstrates the VO₂ film of a quality good enough to be used in practical sensor devices [2]. The ratio of resistances at 27 and 97°C, Δ R, was approximately 1.3 x 10⁴. The value is as large as that of VO₂ films deposited on c-sapphire [4].

Figure 1. R-T curves of VO₂ films deposited (a) on SiO₂/Si at 400° C;(b) on Al₂O₃ at 450° C (pressure:5mtorr; T_a: 490°C)

Figure 1(a) also shows the hysteresis between R-T curves obtained while heating and cooling. The thermal hysteresis is attributed to the evolution and absorption of latent transition heat [5]. The discrepancy between two curves is less than 10°C.

In Fig. 1(b), the R-T curve of VO₂ film on Al₂O₃/Si is compared to that on SiO₂/Si annealed at the same condition. The inferior abruptness and magnitude of MIT of VO₂ film on Al₂O₃ is thought to be the low density of underlying Al₂O₃ layer deposited at 150°C compared to SiO₂ film formed at 925°C.

The effect of operating pressure on resistance change of VO₂ films by MIT was evaluated as shown in Fig. 2. The earlier works on the sputter deposition of VO₂ films reported that the use of V-metal target revealed very narrow process window, and recommended to rather use V₂O₃ or V₂O₅ target [6]. However, the present work indicated that VO₂ films of $\Delta R > 6.3 \times 10^3$ could be obtained with a relatively wide range of pressure, 5 – 25mtorr, in the deposition process, as shown in Fig. 2. The wide process window of the parameter governing the oxidation ambient is very important to establish a reproducible fabrication process of VO₂ film.

Figure 2. The resistance change, ΔR , of VO₂ films deposited on SiO₂/Si at T_s of 400°C.

Figure 3. SEM photographs of VO_2 films as-deposited with operating pressures of (a) 5 mtorr and (b) 20 mtorr.

In Fig. 3, the surface microstructure of 110nm-thick films as-deposited at 400°C was observed using the scanning electron microscopy (SEM). The images show crystalline submicron-grains having rectangular or hexagonal facets. The roughness was also measured using atomic force microscopy (AFM). The rms roughnesses of

 VO_2 films deposited on SiO₂/Si with operating pressure of 5 and 20 mtorr were 15.9 and 20.4 nm, respectively. The roughness is higher than that (7 - 8 nm) of a VO₂ film formed by sol-gel method. The rough surface morphology of VO₂ films shown in Fig. 3 might be due to the formation of polycrystalline grains during deposition. The roughness was not considerably increased by post-annealing.

Figure 4. SEM photographs of VO₂ films as-deposited on Al₂O₃/Si with operating pressures of (a) 5 mtorr (O₂: 12.3%; T_s : 450°C) and (b) 20 mtorr (O₂: 9.1%; T_s : 400°C).

Figure 4 illustrates SEM images showing the surface morphology of VO₂ films as-deposited on Al₂O₃/Si. Although the underlying Al₂O₃ layer was amorphous, grains well-ordered toward two directions as indicated by arrows are observed. The rms rougness of the sample in Fig. 4(b) was 3.4 nm. Further study is required to clarify the effect of underlayer on the grain growth of VO₂ film.

4. Conclusion

The present work demonstrated that the reactive RFmagnetron sputter deposition technique is very promising for depositing VO₂ films on amorphous layers on Si. VO₂ films showing ΔR as large as 1.3 x 10⁴ could be obtained on SiO₂/Si substrate after post-annealing at 490°C. In the deposition process using V-metal target, VO₂ films of ΔR > 6.3x10³ could be obtained in the operating pressure range as wide as 5 – 25 mtorr.

Acknowledgements

This work was supported by the HR-project of Electronics and Telecommunications Research Institute.

References

- [1] H.-T. Kim, Y. W. Lee, B.-J. Kim, B.-G. Chae, S. J. Yun, K.-Y. Kang, K.-J. Han, K.-J. Yee, and Y. S. Lim, Phys. Rev. Lett. 97 (2006) 266401.
- [2] B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, and H.-T. Kim, Appl. Phys. Lett. 90 (2007) 023515.
- [3] B. -G. Chae, D. H. Youn, H. T. Kim, S. L. Maeng and K. Y. Kang, J. Korean Phys. Soc. 44 (2004) 884.
- [4] S. J. Yun, J. W. Lim, B. J. Kim, B.-G. Chae, and H.-T. Kim, to be published.
- [5] F. A. Chudnovski, Sov. Phys. Tech. Phys. 20 (1976) 999.
- [6] Y. Shigesato, M. Enomoto, and E. Odaka, Jpn. J. Appl. Phys. 39, 6016 (2000).