Amorphous High-k LaLuO₃ Dielectric Film for Ge MIS Gate Stack

Toshiyuki Tabata, Koji Kita and Akira Toriumi

Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan Phone and Fax: +81-3-5841-7161, E-mail: tabata@adam.t.u-tokyo.ac.jp

1. Introduction

A Ge MOSFET with a high-k gate dielectric film is an attractive candidate for high performance devices ^[1]. It has been recently reported that rare earth oxides (RE-oxides) with high permittivity are better for Ge than HfO₂ for Si ^[2-4]. It has been also found that 10at% Ge introduction makes Y_2O_3 amorphous, while it is not the case of HfO₂ ^[5]. Thus, a reasonable gate dielectric film for Ge will be amorphous RE-oxides with high-k. RE-oxides are, however, easily crystallized at relatively low temperatures. In this paper, we propose LaLuO₃ as an amorphous RE-oxide with high-k on Ge, and show its dielectric properties of Ge MIS characteristics.

2. Experimental

To raise the crystallization temperature of dielectric films, it is a conventional knowledge that covalent bonding dominated materials such as SiO₂ or Al₂O₃ are mixed with host materials. There is, however, another way to achieve an amorphous structure. We reported that the crystallization temperature of HfO_2 was increased by mixing La_2O_3 up to 950°C due to a large ionic radius difference between Hf and La ^[6]. This is a guiding principle for making amorphous RE-oxide. In the lanthanoid elements, the ionic radius decreases with atomic number increase due to the lanthanide contraction^[7], and La has the largest ionic radius, while Lu has the smallest one. So, the (La2O3+Lu2O3) compound should have a high crystallization temperature than any binary RE-oxides. In fact, LaLuO₃ system has been studied for gate dielectric films on Si [8], but a real advantage of this material on Si has not so far been shown.

We deposited LaLuO₃ by rf co-sputtering of La₂O₃ and Lu₂O₃ on HF-last p-Ge(100) wafers, and then annealed (Post deposition Anneal :PDA) in N_2 or $(N_2+x\%O_2)$ (x :0.001~1) ambient for 30sec from 450 to 600°C. Since the stoichiometry of the deposited film was determined by XPS after the deposition, La(48%)Lu(52%)O₃ and $La(60\%)Lu(40\%)O_3$ are discussed for $LaLuO_3$ in this paper. We checked that there was no difference between those films within our experiments. Au and Al were evaporated for gate electrode and the back ohmic contact of MIS capacitors, respectively. The thickness of high-k film was accurately estimated by the combined technique of grazing incident X-ray reflectivity with spectroscopic ellipsometry measurements ^[9]. XRD measurement was used for analyzing the crystal structure. FT-IR and TEM analyses were performed for selected samples. C-V characteristics were measured for MOS samples annealed in various conditions.

3. Result and Discussion

The dielectric constant of $LaLuO_3$ is shown in **Fig. 1** and the k-value is 23 for $LaLuO_3$. The experiment was performed on Si with relatively thick $LaLuO_3$ film to extract the intrinsic dielectric properties of $LaLuO_3$. The other

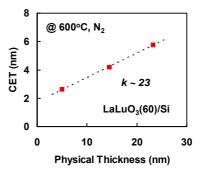


Fig. 1. The relationships between CET and film thickness (determined by GIXR) for 60% La-LaLuO₃, annealed at 600°C in N₂ ambient. The dielectric constant is estimated from the slope (\sim 23).

important requirement for the gate dielectric film is the energy band-gap. Fig. 2 shows that $LaLuO_3$ satisfies the requirements for the energy band-gap of dielectric films (5.5~5.8 eV, measured by the spectroscopic ellipsometry).

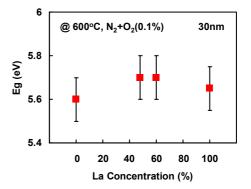
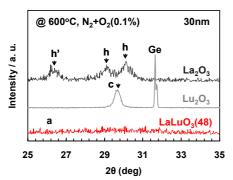



Fig. 2. La concentration dependence of optical band gaps of $LaLuO_3$ determined by spectroscopic ellipsometry measurements.

Amorphous structure of LaLuO₃ film is really maintained after annealing at 600°C in N₂+0.1%O₂ ambient as shown in **Fig. 3**, though both La₂O₃ and Lu₂O₃ are easily crystallized into hexagonal and cubic phase, respectively. The crystallization temperature was above 850°C. A X-TEM image of **Fig. 4** also shows amorphous LaLuO₃ film throughout the film. Here it should be noted that there is no interface layer between Ge and LaLuO₃ film even after annealing in O₂ ambient. No interface layer such as GeO_x is also shown in FT-IR measurement, as shown in **Fig. 5**. The interface GeO_x absorption peak is only observed for the sample annealed in 100%O₂ at 600°C. This will be a significant benefit in terms of the EOT reduction but it gives us a concern about the interface quality.

Fig. 3. XRD spectra of 30nm thick 48% La-LaLuO₃, La₂O₃, and Lu₂O₃ on Ge annealed at 600°C in N_2 +0.1%O₂ ambient (a: amorphous, c: cubic, h: hexagonal, h': hexagonal of La(OH)₃).

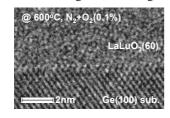
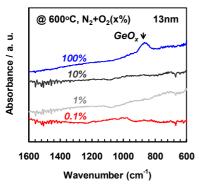
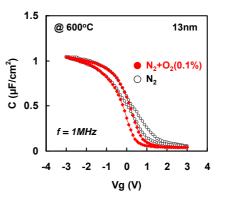




Fig. 4. A X-TEM picture of 60% La-LaLuO_3/Ge annealed at 600°C in $N_2{+}0.1\%\,O_2$ ambient.

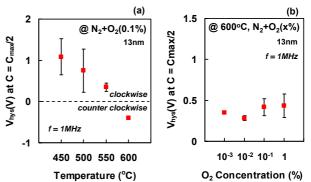


Fig. 5. Fourier transform infrared absorption spectra of 48% La-LaLuO₃/Ge annealed at 600°C in N_2+O_2 ambient with various O₂ concentrations from 0.1% to 100%.

Next, we discuss MIS characteristics of Au/LaLuO₃/ Ge capacitors. Fig. 6 shows C-V curves at 1MHz of La-LuO₃/Ge MIS capacitors annealed at 600°C in N₂ and N₂+0.1%O₂ ambient. The C-V curves are quite good after 600°C annealing and show no difference of saturated capacitance between N₂ and 0.1%O₂ annealed samples thanks to no interface layer Furthermore, a small amount of O₂ significantly improves the interface quality as compared to N₂ annealing. It is really advantageous for the Ge gate stack that the O2-introduced annealing can dramatically decrease the interface states on Ge without any cost of the saturated capacitance (EOT). It is noted that a hysteresis (V_{hys}) is not improved in Fig.6 even by O2-introduced annealing. We studied the V_{hvs} by changing annealing temperature and oxygen concentration, as shown in Fig. 7. The results clearly indicate that the hysteresis is not originated from oxygen vacancies but from strongly temperature dependent phenomena, and we are optimistic for optimizing the annealing condition from results in Fig. 7.

Fig. 6. C-V characteristics of Au/48% La-LaLuO₃/Ge MIS capacitors annealed at 600°C. The hysteresis is as the counter clockwise, and its window is about 300mV.

Fig. 7. (a) V_{hys} vs. annealing temperature at C=C_{acc}/2 of Au/48% La-LaLuO₃/Ge MIS capacitors annealed at various temperatures in N₂+0.1%O₂ ambient. (b) V_{hys} vs. O₂ concentration at C=C_{acc}/2 of Au/48% La-LaLuO₃/Ge MIS capacitors annealed at 600°C with various O₂ concentrations.

4. Conclusions

We have investigated dielectric properties of LaLuO₃ for Ge MIS gate stack. LaLuO₃ has a high dielectric constant (k~23) and amorphous structure after annealed at 600°C. Its energy band-gap is reasonably large (5.5~5.8 eV). The C-V curves annealed in O₂ ambient are quite good and show a high saturated capacitance thanks to no interface layer. It is suggested that the hysteresis in C-V curves can be reduced by optimizing annealing temperature rather than ambient. LaLuO₃ will be a very promising candidate for the high-k dielectric film on Ge.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan and partly performed in collaboration with STARC.

References

- [1] C. O. Chui et al., Tech . Dig. IEDM'03, p. 437 (2003).
- [2] H. Nomura et al., SSDM2005, p. 858.
- [3] M. Sakashita et al., SSDM2007, p. 330.
- [4] D. P. Brunco et al., JAP102, 024104 (2007).
- [5] K. Kita et al., Appl. Surf. Sci. (to be published).
- [6] Y. Yamamoto et al., APL89, 032903 (2006).
- [7] T. Moeller, "The chemistry of the lanthanides," (Reinhold Pub Corp.) (1963).
- [8] J. M. J. Lopes et al., APL89, 222902 (2006).
- [9] H. Shimizu et al., JJAP44, 6131 (2005).