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ABSTRACT

We report for the first time the use of a novel cluster-carbon
(C7H;") implant and pulsed excimer laser-induced solid phase epitaxy
(SPE) technique to form embedded Silicon-Carbon (Si:C) source/drain
(S/D) stressors. A substitutional carbon concentration Cgyp of ~1.1% was
obtained. N-FETs integrated with embedded Silicon-Carbon (Si:C) S/D
stressors formed using the novel Cluster-Carbon implant and pulsed
laser anneal technique demonstrate improvement in current drive lpsar of
15% over control n-FETs formed without carbon implant. lopr—Ipsat
comparison shows a 16% Ipsar enhancement for n-FETs with embedded
Si:C S/D at an logr = 1x107 A/um. Cluster-Carbon implant and laser
anneal presented in this work is a simple and cost-effective approach to
boost Ipsat performance, and is a promising option for strain-engineering
in advanced technology nodes.

INTRODUCTION

Embedded Silicon-Carbon (e-Si:C) source/drain (S/D) stressors
formed by S/D recess-etch and selective epitaxy have been extensively
explored in bulk [1]-[2] and SOI [3] transistors. For ultra-thin-body [4]
or multiple-gate [5] device architectures, integration of embedded S/D
stressors faces challenges in performing S/D recess etch. An alternative
approach to form Si:C S/D through introduction of carbon by ion
implant followed by solid phase epitaxy (SPE) was recently
demonstrated [6]. However, there is no work on use of Cluster-Carbon
(cluster-C) implant for forming Si:C S/D in devices. Cluster-C could
achieve high carbon doses at high throughput. Moreover, laser anneal
on carbon-implanted S/D has not been explored as well.

In this paper, we report the first demonstration of the use of a novel
Cluster-Carbon implant and its combination with laser anneal (LA) to
form e-Si:C S/D n-FETs. Since Cluster-C implant amorphizes the Si
surface, Ge pre-amorphization implant (PAI) can be eliminated. In
addition, it enables precise control of junction depth, and simultaneously
introduces a high dose of C at high throughput. The pulsed laser anneal
(PLA) achieves laser-induced SPE of Si:C with high dopant activation
well above the maximum solid solubility limit. Strained n-FETs with
Si:C S/D having a substitutional carbon concentration (Csuy) of 1.1%
were fabricated, showing 15% drive current enhancement over control
devices.

NOVEL CLUSTER-CARBON IMPLANT AND LASER ANNEAL
TECHNOLOGY, AND DEVICE INTEGRATION

Key process steps for realizing the e-Si:C S/D stressors with the
new cluster-C implant and laser annealing technology are illustrated in
Fig. 1. After definition of active regions, well implant, threshold voltage
Viadjust implant, and anti-punchthrough implant were performed. Poly-
Si/SiO; gate stack, S/D extension (SDE), and silicon nitride SiN spacers
were then formed. For strained n-FET wafers, implantation of cluster-
carbon or ClusterCarbon™ (C;H;") (effective C dose of 8x10"° cm?)
into the S/D region was performed. For control n-FET wafers, Si PAI
(1x10" cm™) was performed. For fair comparison, $/D amorphization
depths for all wafers were kept the same. A SiO, hardmask on the gate
blocked the C;H;" or Si implant and also served as a protection layer to
maintain gate stack integrity during subsequent PLA. As" implant
(8x10" cm™ at 25 keV) and a rapid thermal anneal (RTA) of 950°C 30s
were done to form deep S/D regions. This was followed by a higher
dose but shallower As* S/D implant (2x10'° cm™ at 15 keV) to improve
the contact resistance of the non-silicided S/D regions. This As" implant
also amorphizes the Si surface. A 30 nm thick SiO, layer was deposited
to minimize carbon out-diffusion in a subsequent laser anneal as well as
to function as an anti-reflective coating. Integration challenges such as
melting of the gate associated with use of high laser fluence are avoided.
Following laser anneal, SPE occurred in the C-containing regions to
form the crystalline Si:C S/D stressors. Fig. 2 shows a transmission
electron microscopy (TEM) image of an N-FET with Si:C S/D formed
by C;H;" implant and laser anneal. Full restoration of the crystalline

quality is observed in high resolution TEM images. Formation of high-
quality Si:C in the S/D region is required for its application as stressors.

RESULTS AND DISCUSSION

A. New Cluster-Carbon Implant and Laser Anneal Technology
For cluster-C implant, Ci4sH;4 was used to produce the C,H;" ion
beam. Main advantages of cluster-C implant include uniform C profile,
high-throughput, low effective C energy, and ultra-high dose. Laser
anneal data on Cgy, optimization is shown in Fig. 3. High Resolution X-
Ray Diffraction (HRXRD) is used to obtain Cgy in C7H7+—implanted and
laser anncaled samples [7]-[8]. At an energy fluence of 375 mJ/cm?, a
Caup of ~1.1% was obtained as illustrated in the HRXRD [Fig. 4(a)].
(004) and (224) reciprocal space maps obtained after PLA reveal a
perfect alignment of the Si:C and Si intensity peaks indicating that lattice
alignment along the heterojunction is maintained [Fig. 4(b) and (c)].

B. N-FETs with New Si:C S/D Technology

To ascertain the feasibility of forming Si:C S/D using Cluster-
Carbon implant and PLA-induced SPE for strain engineering in n-FETs,
we integrated both technologies in a standard n-FET process flow and
performed a statistical comparison of the device performance. Slight
reduction in junction leakage is observed for CH;" implanted samples
over Si PAI samples after PLA (Fig. 5). The slight reduction in junction
leakage in the C;H;" implant samples could be due to reduced defect
densities at the interface between amorphous and crystalline regions [9].
Fig. 6-7 show lps-Vgs and Ips-Vps plots for n-FETs with a gate length Lg
of 100 nm. The smaller lattice constant of Si:C S/D induces uniaxial
tensile strain in the Si channel. Hence n-FETs with Si:C S/D show a
~15% higher Ipsar over unstrained control n-FETs. All n-FETs show
comparable short channel effects and subthreshold characteristics. S/D
series resistance for devices with Si:C S/D or Si S/D as obtained by
examining the asymptotic behaviour of RroraL curve at large Vg are
comparable [Fig. 8]. The total resistance RroraL as a function of Lg is
shown in Fig. 9. An indication of enhanced mobility in the strained
devices is shown by the smaller slope in Rrora-Le plot. The ratio of
dRtotal/dLg of Si:C S/D devices over that of Si S/D devices indicates a
mobility enhancement of 28%. Fig. 10 compares the Ipsar-lore plots of
n-FETs with Si:C S/D and Si S/D at a fixed lore of 100 nA/um and
shows an Ipsar enhancement of 16% in the strained devices. In a
comparison of logr versus Ipuin, @ higher enhancement of 26% is
obtained for n-FETs with Si:C S/D [Fig. 11]. At a fixed DIBL of 150
mV/V [Fig. 12] and at a fixed subthreshold slope (SS) [Fig. 13] of 125
mV/decade, lpsat enhancement due to the Si:C S/D is 14% and 15%,
respectively.

CONCLUSION
We demonstrated the first integration of a novel Cluster-Carbon

(C;H;") and pulsed excimer laser-induced SPE technique to form
embedded Si:C S/D stressors in nanoscale n-FETs. A substitutional
carbon concentration of ~1.1% was obtained. N-FETs with Si:C S/D
show a drive current enhancement of ~15% over control n-FETs and is
attributed to strain-induced effects. Cluster-Carbon implant and anneal
is a simple and attractive technique to integrate lattice-mismatched S/D
stressors in advanced n-FETs and is a very promising option for future
technologies.
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Fig. 1. (a) Key process steps employed in this work, including (b) cluster-
carbon (C;H;") and arsenic As' implant, and laser anneal to form (c) n-FET

with Si:C S/D stressors.
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Fig. 3. Relation between Cgyp and
laser energy density. At 375 mJ/cm?,
Csup of ~1.1% was obtained.
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ing Si:C S/D with Cgy, of 1.1%. After

cluster-carbon implant and laser anneal, full restoration of the crystalline
quality is achieved as seen in the HRTEM image.
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Fig. 4. (a) HRXRD plot indicates Csypp = 1.1% for a C;H;" implanted sample
irradiated with 5 pulses of laser at 375 mJ/cm®. Si:C is pseudomorphically Si' implant show comparable junction
grown on Si, as indicated by the (b) (004) and (c) (224) reciprocal space maps.
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Fig. 10. 16% Ipsar enhancement is
observed for n-FET with Si:C S/D at
lopr = 1% 10-7 A/l.ll’l’l

Fig. 11. At loge = 1x107 A/um, n-
FET with Si:C S/D has 26% higher
Ipiin than the control n-FET.

Fig. 12. At DIBL of 0.15 V/V, n-FET
with Si:C S/D shows enhancement in
IDSAT Of 14%.
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Fig. 13. At subthreshold swing of 125
mV/dec., n-FET with Si:C S/D
demonstrates 15% higher lpgsar.





