
N-Channel MOSFETs with Embedded Silicon-Carbon Source/Drain Stressors formed using  
Novel Cluster-Carbon Implant and Excimer Laser-Induced Solid Phase Epitaxy   

Shao-Ming Koh, Karuppanan Sekar*, Wade Krull*, Xincai Wang†, Ganesh Samudra, and Yee-Chia Yeo. 
Silicon Nano Device Laboratory, Dept. of Electrical and Computer Engineering, National University of Singapore (NUS), Singapore 117576.  

*SemEquip Inc., North Billerica, MA 01862-2000, USA. †Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, S638075.  
Phone: +65 6516-2298,  Fax: +65 6779-1103,  Email: yeo@ieee.org 

                          ABSTRACT 
We report for the first time the use of a novel cluster-carbon 

(C7H7
+) implant and pulsed excimer laser-induced solid phase epitaxy 

(SPE) technique to form embedded Silicon-Carbon (Si:C) source/drain 
(S/D) stressors.  A substitutional carbon concentration Csub of ~1.1% was 
obtained.  N-FETs integrated with embedded Silicon-Carbon (Si:C) S/D 
stressors formed using the novel Cluster-Carbon implant and pulsed 
laser anneal technique demonstrate improvement in current drive IDSAT of 
15% over control n-FETs formed without carbon implant.  IOFF–IDSAT 
comparison shows a 16% IDSAT enhancement for n-FETs with embedded 
Si:C S/D at an IOFF = 1×10-7 A/μm.  Cluster-Carbon implant and laser 
anneal presented in this work is a simple and cost-effective approach to 
boost IDSAT performance, and is a promising option for strain-engineering 
in advanced technology nodes.   

INTRODUCTION 
Embedded Silicon-Carbon (e-Si:C) source/drain (S/D) stressors 

formed by S/D recess-etch and selective epitaxy have been extensively 
explored in bulk [1]-[2] and SOI [3] transistors.  For ultra-thin-body [4] 
or multiple-gate [5] device architectures, integration of embedded S/D 
stressors faces challenges in performing S/D recess etch.  An alternative 
approach to form Si:C S/D through introduction of carbon by ion 
implant followed by solid phase epitaxy (SPE) was recently 
demonstrated [6].  However, there is no work on use of Cluster-Carbon 
(cluster-C) implant for forming Si:C S/D in devices. Cluster-C could 
achieve high carbon doses at high throughput.  Moreover, laser anneal 
on carbon-implanted S/D has not been explored as well. 

In this paper, we report the first demonstration of the use of a novel 
Cluster-Carbon implant and its combination with laser anneal (LA) to 
form e-Si:C S/D n-FETs.  Since Cluster-C implant amorphizes the Si 
surface, Ge pre-amorphization implant (PAI) can be eliminated.  In 
addition, it enables precise control of junction depth, and simultaneously 
introduces a high dose of C at high throughput.  The pulsed laser anneal 
(PLA) achieves laser-induced SPE of Si:C with high dopant activation 
well above the maximum solid solubility limit.  Strained n-FETs with 
Si:C S/D having a substitutional carbon concentration (Csub) of 1.1% 
were fabricated, showing 15% drive current enhancement over control 
devices.  
NOVEL CLUSTER-CARBON IMPLANT AND LASER ANNEAL 

TECHNOLOGY, AND DEVICE INTEGRATION 
Key process steps for realizing the e-Si:C S/D stressors with the 

new cluster-C implant and laser annealing technology are illustrated in 
Fig. 1.  After definition of active regions, well implant, threshold voltage 
Vt adjust implant, and anti-punchthrough implant were performed.  Poly-
Si/SiO2 gate stack, S/D extension (SDE), and silicon nitride SiN spacers 
were then formed.  For strained n-FET wafers, implantation of cluster-
carbon or ClusterCarbonTM (C7H7

+) (effective C dose of 8×1015 cm-2) 
into the S/D region was performed.  For control n-FET wafers, Si PAI 
(1×1015 cm-2) was performed.  For fair comparison, S/D amorphization 
depths for all wafers were kept the same.  A SiO2 hardmask on the gate 
blocked the C7H7

+ or Si implant and also served as a protection layer to 
maintain gate stack integrity during subsequent PLA.  As+ implant 
(8×1014 cm-2 at 25 keV) and a rapid thermal anneal (RTA) of 950oC 30s 
were done to form deep S/D regions.  This was followed by a higher 
dose but shallower As+ S/D implant (2×1015 cm-2 at 15 keV) to improve 
the contact resistance of the non-silicided S/D regions.  This As+ implant 
also amorphizes the Si surface.  A 30 nm thick SiO2 layer was deposited 
to minimize carbon out-diffusion in a subsequent laser anneal as well as 
to function as an anti-reflective coating.  Integration challenges such as 
melting of the gate associated with use of high laser fluence are avoided.  
Following laser anneal, SPE occurred in the C-containing regions to 
form the crystalline Si:C S/D stressors.  Fig. 2 shows a transmission 
electron microscopy (TEM) image of an N-FET with Si:C S/D formed 
by C7H7

+ implant and laser anneal. Full restoration of the crystalline 

quality is observed in high resolution TEM images. Formation of high-
quality Si:C in the S/D region is required for its application as stressors. 

             RESULTS AND DISCUSSION 
A. New Cluster-Carbon Implant and Laser Anneal Technology 

For cluster-C implant, C14H14 was used to produce the C7H7
+ ion 

beam. Main advantages of cluster-C implant include uniform C profile, 
high-throughput, low effective C energy, and ultra-high dose.  Laser 
anneal data on Csub optimization is shown in Fig. 3.  High Resolution X-
Ray Diffraction (HRXRD) is used to obtain Csub in C7H7

+-implanted and 
laser annealed samples [7]-[8]. At an energy fluence of 375 mJ/cm2, a 
Csub of ~1.1% was obtained as illustrated in the HRXRD [Fig. 4(a)]. 
(004) and (224) reciprocal space maps obtained after PLA reveal a 
perfect alignment of the Si:C and Si intensity peaks indicating that lattice 
alignment along the heterojunction is maintained [Fig. 4(b) and (c)].  
B. N-FETs with New Si:C S/D Technology 

To ascertain the feasibility of forming Si:C S/D using Cluster-
Carbon implant and PLA-induced SPE for strain engineering in n-FETs, 
we integrated both technologies in a standard n-FET process flow and 
performed a statistical comparison of the device performance. Slight 
reduction in junction leakage is observed for C7H7

+ implanted samples 
over Si PAI samples after PLA (Fig. 5).  The slight reduction in junction 
leakage in the C7H7

+ implant samples could be due to reduced defect 
densities at the interface between amorphous and crystalline regions [9].  
Fig. 6-7 show IDS-VGS and IDS-VDS plots for n-FETs with a gate length LG 
of 100 nm.  The smaller lattice constant of Si:C S/D induces uniaxial 
tensile strain in the Si channel.  Hence n-FETs with Si:C S/D show a 
~15% higher IDSAT over unstrained control n-FETs.  All n-FETs show 
comparable short channel effects and subthreshold characteristics. S/D 
series resistance for devices with Si:C S/D or Si S/D as obtained by 
examining the asymptotic behaviour of RTOTAL curve at large VG are 
comparable [Fig. 8]. The total resistance RTOTAL as a function of LG is 
shown in Fig. 9. An indication of enhanced mobility in the strained 
devices is shown by the smaller slope in RTOTAL-LG plot. The ratio of 
dRTOTAL/dLG of Si:C S/D devices over that of Si S/D devices indicates a 
mobility enhancement of 28%. Fig. 10 compares the IDSAT-IOFF plots of 
n-FETs with Si:C S/D and Si S/D at a fixed IOFF of 100 nA/μm and 
shows an IDSAT enhancement of 16% in the strained devices. In a 
comparison of IOFF versus IDLin, a higher enhancement of 26% is 
obtained for n-FETs with Si:C S/D [Fig. 11]. At a fixed DIBL of 150 
mV/V [Fig. 12] and at a fixed subthreshold slope (SS) [Fig. 13] of 125 
mV/decade, IDSAT enhancement due to the Si:C S/D is 14% and 15%, 
respectively.     

CONCLUSION 
We demonstrated the first integration of a novel Cluster-Carbon 

(C7H7
+) and pulsed excimer laser-induced SPE technique to form 

embedded Si:C S/D stressors in nanoscale n-FETs.  A substitutional 
carbon concentration of ~1.1% was obtained. N-FETs with Si:C S/D 
show a drive current enhancement of ~15% over control n-FETs and is 
attributed to strain-induced effects.  Cluster-Carbon implant and anneal 
is a simple and attractive technique to integrate lattice-mismatched S/D 
stressors in advanced n-FETs and is a very promising option for future 
technologies. 
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Fig. 1. (a) Key process steps employed in this work, including (b) cluster-
carbon (C7H7

+) and arsenic As+ implant, and laser anneal to form (c) n-FET 
with Si:C S/D stressors. 

Fig. 2. TEM image of the n-FET having Si:C S/D with Csub of 1.1%.  After 
cluster-carbon implant and laser anneal, full restoration of the crystalline 
quality is achieved as seen in the HRTEM image.  
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Fig. 3. Relation between Csub and 
laser energy density. At 375 mJ/cm2, 
Csub of ~1.1% was obtained. 

Fig. 4. (a) HRXRD plot indicates Csub = 1.1% for a C7H7
+ implanted sample 

irradiated with 5 pulses of laser at 375 mJ/cm2.  Si:C is pseudomorphically 
grown on Si, as indicated by the (b) (004) and (c) (224) reciprocal space maps. 

Fig. 5. Diodes that received C7H7
+ or 

Si+ implant show comparable junction 
leakage current after laser anneal. 
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Fig. 6. IDS-VGS curves for n-FETs with 
Si:C or Si S/D showing comparable 
DIBL and subthreshold swing.  

Fig. 7. Device with Si:C S/D shows 
significant enhancement in IDS over 
devices with Si S/D. 

Fig. 8. S/D series resistance is 
comparable for n-FETs with Si:C S/D 
or Si S/D.  

Fig. 9. Mobility enhancement due to 
Si:C S/D is ~28%, as indicated by the 
reduced dRTOTAL/dLG. 
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Fig. 10. 16% IDSAT enhancement is 
observed for n-FET with Si:C S/D at  
IOFF = 1×10-7 A/μm. 

Fig. 11. At IOFF = 1×10-7 A/μm, n-
FET with Si:C S/D has 26% higher 
IDlin than the control n-FET. 

Fig. 12. At DIBL of 0.15 V/V, n-FET 
with Si:C S/D shows enhancement in 
IDSAT of 14%. 

Fig. 13. At subthreshold swing of 125 
mV/dec., n-FET with Si:C S/D 
demonstrates 15% higher IDSAT. 
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