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1. Introduction

The Fully-Depleted (FD) Silicon On Insulator (SMOSFET is very
promising for scaled CMOS technology generatiohgrovides an
ideal subthreshold slope (~60mV/dec), reduced jonatapacitances
and a better control of short channel effects (SDEBL). Recent
papers [1,2] have demonstrated that the use ofl gata (MG) com-
bined with high-k (HK) is very interesting for perfmance enhance-
ment because it enables to naturally achieve a thigishold voltage
(Vth) value compatible with low power applicationkile keeping the
channel intrinsic. However a reduction of this #ireld voltage is
necessary for low Vth and for analog applicatid®esveral approaches,
for Vth modulation, have been proposed in litemtauch as work-
function engineering or dual metal gate integrafid+], but these
different options are not easily manageable. FoBGDdevices one
interesting way to modulate the threshold voltag®iuse a thin BOX
combined with ground-plane (GP) implantation [6].this paper we
propose to combine a simple poly/SION gate staclkERSOI devices
with low channel doping and thin BOX with GP imptation in order
to achieve Vth (~0.2-0.3V) compatible with low Vémd analog ap-
plications. The viability of this structure is alexamined through
mobility, reliability, analog performances, varilittyi and noise study
and compared to FDSOI devices with high-k metat géack.

2. Choice of architecture and implantation conditions

For low power applications (LP) the Vth requiredalsout (0.2-0.3V).
Band-edge electrode (N+ polysilicon/SiON gate stackelectrode on
NMOS with thick BOX requires a high channel dopingt.10%cm?®
(fig.1). As published in [6], the use of a GP with doping of
5.10%nunder the BOX allows increasing the Vth by 100m\thwi
out adding doping into the channel. Thanks to tRecGmbined with a
thin BOX the channel doping (Nch) can be relaxedvmoto
2.10%cm? (for TBox 10nm) (fig.2). In addition, the use offan BOX
combined with a GP enables to reduce DIBL. Using MASTAR
model [7] we have determined that the optimal B@Xkness should
be around 20nm for Lg 32nm with Tsi 8nm to keeplBLX100mV
(fig. 3). In order to dope the channel and the Gif wne unique im-
plantation boron for NMOS and Ph for PMOS have hesad.

2. Process flow

The starting materials are 300 mm <100> UNIBONSOI wafers
with BOX thicknesses of 20nm. SOI films were thidngown by
thermal oxidation and wegtching to achieve a final thickness of
around 8-10 nm. After MESA isolation, the chann@/iplantation
is selectively done on NMOS and PMOS devices. ANSiflelectric
of approximately 2nm is grown. A poly-Si layer d @m is deposited
for gate fabrication. A 193 nm lithography combineith trimming is
performed to achieve the desired gate dimensioms.riifinimum gate
length dimension measured on the wafers is arolmm2(fig.4).
After an offset spacer of 10nm realization, a dele@pitaxy of 10nm
is performed in extension regions in order to redaccess resistance.
Raised extensions are implanted. To finish Dshapeers, S/D im-
plantation (activated by a 1080°C RTP spikes anraa silicidation
(NiPtSi) are realized.

3. Thin gate oxide experimental results

By varying the GP dose from 26m? to 6.13°cm? for NMOS and
6.10%cm? to 1.4.16%m? for PMOS the long Vth varies from 0.2V
(as expected) to 0.5V (figs.5 and 6). Both NMOS &MiOS 1d(Vg)
characteristics are presented on fig. 7 for chadaging of 6.1&cm?

(NMOS) and 1.4.18cm? (PMOS). Whatever the implant dose used,

the lon/loff is not degraded (figs.8 and 9) for NE@nd PMOS re-
spectively). Only the impact of the long Vth shigt seen on short
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MOSFETSs. By increasing the implant dose for NMOSI &MOS
devices (figs.10 and 11), we observe strong lovd fimobility degra-
dation as expected for higher channel doping. Degpis, the low
channel doping variants (26m? (NMOS) and 6.18cm? (PMOS))
show peak mobility values similar to the ones &f timdoped channel
devices with high-k metal gate stack (degradedtimynger Coulomb
scattering [9]). Regarding the NBTI (fig.12) of weafwith channel
doping of 2.16°cm? the values are better compared to the
high-k/metal gate stack, certainly due to the abseof N species
coming from the TiN metal gate and transferred itite pedestal
oxide under the high-k, that considerably degrad®TIN[9]. The
PBTI (not shown here is very good for the two typégate material
and whatever the channel doping).

4. Analog gain

In order to be used in a CMOS platform, FDSOI mist
co-integrated with 1/0O devices. The EOT of analeyide is around
2.9nm corresponding to a Vdd of 1.8V. Analog g@wds) measured
for both I/O and core devices are plotted in figsahd 14. The gain
values for the variants with 2¥6m? (NMOS) and 6.18cm?
(PMOS) channel doping have been measured aroundt40@=1pm.
The slightly lower value measured for the metakggttick case with
undoped channel is attributed to the presenceedifiih-k.

5. Matching

The matching (fig.15) of the channel doping vasai®.16%cm?
(NMOS) and 6.185cm? (PMOS)) reveals that the values are similar to
those of the typical LSTP bulk technology 4.7mV.[d@]. However
the value is slightly degraded as compared to ifjie-k'MG undoped
channel [8] but is strongly degraded as the chatimging increases.
6. Noise

The curves fig.16 for NMOS and PMOS show a stantafdviour of
the 1/f noise evolution with a plateau in the soésghold range and a
decrease proportional tasf in strong inversion. A scaling effect
could be noted for both NMOS and PMOS devices. T typical
effect for devices with pocket implantations. Nolsgel of FDSOI
with poly/SiON gate stack is in line with bulk degs however de-
vices with high-k/metal gate stack are noisier byt 1 decade.

4. Conclusion

In this paper we demonstrate the possibility to BEXSOI devices
with poly/SiON gate stack for low Vth and analogbgations. Good
mobility, analog performances, noise and reliabMalues have been
demonstrated with the combination of a thin BOX &¥d and light
channel doping (dose around 2"’t&i® (NMOS) and 6.15cm?
(PMOS)). However the necessity of a strong charmiwding to
achieve high Vth values looks incompatible with IES@pplications
because of the variability and mobility penalty.efihin case where
low and high Vth are necessary a poly/SiON, highdtal gate
co-integration can be envisaged.
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Figure 1: TCAD simulation of long NMOS linear Figure 2: Channel dose necessary to obtain Fagure 3: Optimal BOX thickness determination
Vth evolution versus channel doping for severdbng NMOS linear Vth around 0.2V versus BOXfor NMOS FDSOI devices with Lg 32nm
BOX thickness with a GP doping of 54em? thickness with a GP doping of 54em*
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Figure 4: TEM cross-section of 25Figure 5: NMOS Vth(Lg) behaviour Figure 6: PMOS Vth(Lg) behaviour Figure 7: NMOS and PMOS
nm nMOS FDSOI transistor with versus Nch/GP implant dose forversus Nch/GP implant dose forld(Vg) curves (6.18cm? (NMOS)
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Figure 8: NMOS lon/loff trade-off versus Figure 9: PMOS lon/loff trade-off versusFigure 10: Mobility measurements from L=10um
Nch/GP implant dose for FDSOI devices witiNch/GP implant dose for FDSOI devices witiNMOS devices with poly/SiON gate stack versus
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Figure 11: u measurements fromFigure 12: NBTI variation for FDSOI Figure 13: 19A/dd 1.1V Figure 14: 29A/vdd 1.8V
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Figure 15: Linear Vth mismatch variation forFigure 16: NMOS and PMOS variation of the normaligeain current 1/f noise level against Id*L/W
NMOS and PMOS with various structure forat 1Hz for FDSOI devices (Poly/SiON (21@m? NMOS; 6.16°cm? PMOS) ) or High-k/TiN gate
area <0.1uth stack) and bulk (Poly/SiON gate stack)
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