Defect-less Monolithic Low-k/Cu Interconnects by Chemistry-controlled CMP

M. Ueki¹, T. Onodera¹, A. Ishikawa², S. Hoshino² and Y. Hayashi¹

¹LSI Fundamental Research Laboratory, NEC Electronics Corporation, 1120, Shimokuzawa, Sagamihara, Kanagawa, 229-1198, Japan
Phone : +81-42-771-0689, E-mail : makoto.ueki@necel.com
²Nikon Corporation, Core Technology Center 1-6-3, Nishiohi, Shinagawa, Tokyo, 140-8601, Japan

1. Introduction
In order to realize high performance and low power dissipation in scaled down LSIs, a full low-k interconnect structure without SiO₂ (k~4.5) hard masks (HM) is inevitably needed. The key process for SiO₂ HM less structure is CMP and post-CMP cleaning, since a low-k film with hydrophobic surface and low modulus is exposed (Fig.1). The low modulus causes scratch and delamination during the over polishing, requiring precise end-point detection (EPD) system. The hydrophobic surface makes the post-CMP cleaning difficult. In this work, we investigated the effect of CMP process on the low-k monolithic structures using a local-CMP technology [1-4].

2. Experimental
Fig.2 describes the features of a local CMP, where the CMP pad with smaller diameter than 300nm-wafer scans a face-up wafer on the rotating chuck. This actualizes precise in-situ optical EPD based on the reflection spectra from the polishing surface. When the Cu film is thinner than 100nm, the reflection intensity starts to decrease because of the transparency. As the result, we can detect the Cu thickness of 100nm as T₀ in the on-current CMP. After the Cu is removed completely, the Cu clear is detected as T₁. The over-polishing time (OPT) is set for the time difference such as α(T₁-T₀). Namely, regardless of the initial Cu thickness, the EPD method estimates the “on-current” Cu CMP rate of the last 100nm-thickness, enables us to set precise OPT with “wafer by wafer”. An example of the EPD system is shown in Fig.3. The precise EPD is a key to reduce CMP defects during OPT especially for low-k monolithic structure.

3. Results and discussion
3-1: Basic low-k CMP properties
We investigated basic CMP properties for several low-k films (Table 1). Each blanket film was polished for 50sec under the pressure of 2.0psi. After CMP, defects were detected by a defect inspection system and classified.

3-2: Surface cleaning on low-k film after CMP
In actual CMP process with Cu patterns, we have to care Cu organic complex residues during the post-CMP cleaning. In order to suppress Cu complex residues, we need to control the oxidation-reduction potential (ORP) of the cleaning chemicals [5]. Fig.6(a) compares Cu intensity on the SiOCH (k=3.1) area in a patterned wafer after CMP, detected by TOF-SIMS analysis. Compared with DIW rinse after brush scribe, the alkalized water rinse with ORP=−0.7V decreased the Cu concentration remained on the SiOCH film, resulting in tighter distribution of the breakdown electric field (Ebd) between adjacent lines (Fig.6(b)). These results indicate that the control of the ORP of the cleaning chemical is of great importance to suppress Cu organic residues and obtain superior dielectric properties in the low-k monolithic structure (Fig.7).

3-3: Interconnect performances
The low-k monolithic structure had less increase in the line resistance during barrier metal (BM) CMP time than the SiO₂ monolithic structure (Fig.8). This is because the polishing rate of the low-k film was 1/10 smaller than that of SiO₂ film. The CMP self-stop nature of the low-k structure as well as the precise EPD system suppressed deviation in the interconnect parameters against CMP over polishing. Fig.9 plots the C-R of the L/S=100/100nm lines. The inter-line capacitance in the low-k structure was reduced by 20% than that in the SiO₂ one, while the dispersion in C-R was smaller in the low-k than in the SiO₂. The worst-case C-R characteristic was improved by 31%. Fig.10 shows the distribution of the Ebd measured by comb-wiring pattern with L/S =90/90nm and the 80mm parallel length. Optimizing ORP of cleaning chemicals, the low-k structure found to show comparable Ebd distribution to the SiO₂ one.

4. Conclusions
Defect-less monolithic low-k/Cu interconnects have been obtained for low parasitic capacitance LSIs. The change in low-k surface from hydrophobic to hydrophilic by the CMP slurry with oxidizer, and the control of ORP of cleaning chemical are essential for achieving superior dielectric property in the low-k monolithic structure. The defect-less low-k eff Cu interconnect is practical for digital-consumer and automotive applications.

Acknowledgements
A part of the research is supported by NEDO.

References
Fig.1 CMP related issues on low-k direct CMP.

Fig.2 The CMP tool used for this experiment with a flexible thin-Cu end point detection (EPD) method using white-light interferometry, in which the under-layer can be detected through the Cu film less than 100nm-thick.

Table 1 Film properties

<table>
<thead>
<tr>
<th></th>
<th>SiOCH</th>
<th>SiOCH</th>
<th>SiOCH</th>
<th>SiOCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-value</td>
<td>4.5</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>80</td>
<td>13</td>
<td>20</td>
<td>6.5</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>2.3</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>C/Si ratio</td>
<td>0</td>
<td>0.6</td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Contact angle (°)</td>
<td>30</td>
<td>86</td>
<td>77</td>
<td>60</td>
</tr>
</tbody>
</table>

Fig.3 The EPD time for Cu CMP with the different Cu initial thickness (Lot-A > Lot-B). \(\Delta T: T_2 - T_0 \) didn’t change between the Lots, indicating the Cu removal rate was identical.

Fig.4 Surface chemical composition; (a) C/Si and (b) O/Si atomic ratio measured by XPS analysis.

Fig.5 Defect density vs. contact angle between SiOCH surface and DIW droplet.

Fig.6 Effect of post-CMP cleaning on (a) SiOCH surface Cu concentration and (b) the breakdown electrical field (\(E_{bd} \)) in the 200nm-pitched lines.

Fig.7 Post-CMP cleaning mechanism rinsed with DIW and Alkalized water.

Fig.8 \(\rho_{Cu} \) change as a function of the barrier metal (BM) CMP time.

Fig.9 C-R plots for the L/S=100/100nm interconnects.

Fig.10 Distribution of the breakdown electric field (\(E_{bd} \)), (a) SiOCH, (b) low-k