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Introduction 

Si-based transistors are constantly scaled down to their limit 

for the ever increasing need for higher speed and lower power 

computing.  High mobility III-V compound semiconductors are 

being actively evaluated in research as one of the promising 

technology boosters which can enhance the device performance not 

only by relying on scaling.  InGaAs and InAlAs are used as a 

channel and barrier layer material and embrace the advantages of 

higher electron mobility and larger bandgap as compared to Si [1,2].  

In order to sustain a better gate capacitance scalability for 

metal-oxide-semiconductor (MOS) device application, high-k 

dielectrics has been deposited onto the InGaAs substrates [2-5].  

Recent study demonstrated native-oxide-free interface of high-k 

dielectrics/GaAs and InGaAs gate stack possibly because of 

self-cleaning during Atomic-Layer-Deposition (ALD) process [2-7].  

Comparing to elemental semiconductors such as Si and Ge, III-V 

semiconductors are likely to form defects which cause Fermi-level 

pinning at the interface by extrinsic defects such as surface antisite 

defects and high interface state density due to native oxide [8,9].  

Although it is important to understand the interface property of 

HfO2/InGaAs and HfO2/InAlAs, however, the detail interface 

analysis has not adequately been done yet.  In this work, we 

studied the interface property of HfO2/InGaAs and HfO2/InAlAs

stacks by using Synchrotron Radiation Photoemission 

Spectroscopy (SRPES) [10-13]. Bandoffsets at the interface of 

HfO2/InGaAs and InAlAs were constructed.  Then, self-cleaning 

mechanism during ALD HfO2 deposition was investigated through 

surface and interface analysis of InGaAs and InAlAs. 

Band offset extraction 

 The In0.53Ga0.47As and In0.52Al0.48As films were grown by 

MBE on semi-insulating (100) InP wafers.   Then 10nm-thick 

HfO2 layers were deposited on the wafers by Atomic Layer 

Deposition (ALD) system by ex-situ.   

Since SRPES has a high energy resolution at the valence 

band (VB) spectrum maximum, valence band offset can be 

precisely extracted by taking difference between VB maximum of 

bulk substrate and HfO2.  Ga 3d and In 4d spectrum peaks were 

used as a reference.  In order to thin the HfO2 layer to a thickness 

that allows detection of Ga and In core levels, HfO2 etch-back was 

done by diluted HF solution as shown in Fig. 1 and 3.  Reference 

Ga and In peaks clearly appeared at 55 and 58 sec for InGaAs and 

InAlAs, respectively.  VB offset for InGaAs and InAlAs to HfO2

were determined to be 3.37eV and 3.00eV, respectively, as 

illustrated in Fig. 2 and 4. 

The HfO2 bandgap was extracted from oxygen energy loss 

spectrum [10,11] as shown in Fig. 5 and 7.  The HfO2 bandgap is 

estimated 5.94eV and 5.93eV on InGaAs and InAlAs. 

Finally, taking InGaAs and InAlAs bandgap, 0.77eV and 

1.46eV, into account, the band diagram of HfO2 on InGaAs and 

InAlAs were constructed based on SRPES results as shown in Fig. 

6 and 8.  The conduction band (CB) offsets of 1.80eV and 1.47eV 

for InGaAs and InAlAs should minimize electron tunneling for 

NMOSFET applications, which is consistent with our previous 

electrical characterization [6]. 

Surface analysis of InGaAs and InAlAs 

In order to understand chemical and thermal property of the 

interfaces, we started from the surface analysis of bare InGaAs and 

InAlAs substrates with native oxides.  In as-received InGaAs 

substrates, native GaOx, InOx, and AsOx were grown as shown in Fi. 

9 (a) and (b).  HCl is known as an acid which effectively etches 

native oxide.  After 9% HCl etching, although GaOx and InOx still 

remained, however AsOx were completely etched away as shown in 

Fig 9 (c) and (d).  In turn, surface elemental As appeared because 

As precipitates are formed after AsOx removal.  In order to 

remove remaining native oxide and elemental As, in-situ ultrahigh 

vacuum (UHV) annealing at 400oC was conducted.  As a result, 

GaOx and InOx were completely removed.  This was confirmed by 

observing surface-shift Ga and In peak in Fig. 9 (e) [12,13].  In 

addition, elemental As was also completely removed by As 

desorption in Fig. 9(f).  In the case of InAlAs substrates, almost 

the same results were obtained except native AlOx still remained 

even after HCl etching and annealing as shown in Fig. G (d) and 

(g).  After annealing, more Al-suboxide was grown by possible 

transfer of oxygen from other oxide [14] with InOx being a likely 

candidate because of the low formation free energy of AlOx as 

shown in Table 1 [15]. 

Interface analysis of HfO2/InGaAs and InAlAs 

ALD HfO2 was grown on the as-received InGaAs and InAlAs 

substrates which have native oxides in order to examine the 

transition of native oxides before and after ALD process.  In order 

to expose the interface, step-by-step wet etch back was conducted 

by diluted HF as described earlier.  At the interface of 

HfO2/InGaAs, it was seen that the amount of native GaOx, InOx

and AsOx were significantly reduced from the initial as-received 

substrates by comparing Fig. 11 (a), (b) and Fig. 9 (a), (b).  Fig. 

12 shows the intensity ratio of oxide bonding to substrate bonding 

peak.  Oxide species after ALD processing are clearly reduced 

from the initial substrates.  This result resembles HCl wet clean 

result in the surface analysis.  HCl solution reduces the native 

oxides to elements so that surface elemental As appears.  This 

result is therefore probably due to the self-cleaning process during 

ALD HfO2 deposition and its highly reactive chemical reaction.  

The possible model can be proposed: Hf precursor reacts with 

native oxide, most likely AsOx with high formation free energy, Hf 

is oxidized to HfO2, and then native oxide is reduced to elements as 

illustrated in Fig. 15.  As a proof, elemental As which was not 

observed on the initial substrate was clearly observed at the 

interface.  This As may form As antisite defect on missing Ga site 

and cause large density of gap state and Fermi-level pinning [8, 9].  

GaOx and InOx will also be reduced and they may form InGaAs 

rather than elemental precipitates.  The same phenomenon was 

seen in the HfO2/InAlAs stack as shown in Fig. 12 and 13, except 

the large amount of AlOx still remains which may degrade interface 

property in high-k/InAlAs gate stack. 

Summary

The SRPES study constructed band diagram of HfO2/InGaAs

and HfO2/InAlAs stacks and revealed that these stacks are scalable 

in terms of conduction band offset for NMOSFET application.  

The surface of InGaAs and InAlAs was analyzed.  In both InGaAs 

and InAlAs, HCl wet clean generated surface elemental As.  By 

in-situ annealing, native oxides and also surface elemental As was 

completely removed.  The interface of HfO2/InGaAs and 

HfO2/InAlAs was also investigated by using etch-back experiments.  

After the ALD deposition, native oxides are clearly reduced from 

the initial as-received substrates.  ALD deposition process with 

highly reactive Hf precursor can self-clean the III-V semiconductor 

surface and provide oxide-free interface. 
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Fig. 1 Etch-back profile of 

Ga 3d/Hf 4f spectrum of 

HfO2/InGaAs. 

Fig. 2 (a) Ga 3d/In 4d/Hf 4f spectrum after 

and before etch-back.  (b) VB spectrum after 

and before etch-back. 

Fig. 3 Etch-back profile of Ga 

3d/Hf 4f spectrum of 

HfO2/InGaAs

Fig. 4 (a) In 4d/Hf 4f spectrum after and 

before etch-back.  (b) VB spectrum after 

nad before etch-back. 

Fig. 5 Oxygen 1s energy loss 

spectrum of HfO2/InGaAs. 

Fig. 6 Experimentally constructed 

Energy band diagram of HfO2/InGaAs.

Fig. 7 Oxygen 1s energy loss 

spectrum of HfO2/InAlAs. 

Fig. 8 Experimentally constructed 

energy band diagram of HfO2/InGaAs

Fig. 9 Ga 3d/In 4d and As 3d spectrum of (a, b) as-received, 

(c, d) HCl clean, (e, f), HCl clean + annealed, InGaAs 

Fig. 10 Al 2p, In 4d and As 3d spectrum of (a, b, c) as-received, (d, e, f) HCl 

clean, (g, h, I) HCl clean + annealed, InAlAs substrate. 

Fig. 11 (a) Ga 3d/In 4d/Hf 4f spectrum at the 

interface of HfO2/InGaAs after 55sec etch-back. Fig. 12 (a) Al 2p, In 4d/Hf 4f and As 3d spectrum at the interface of HfO2/InAlAs after 58sec etch-back. 

Fig. 13 The Ratio of oxide bonding intensity 

to substrate intensity with different treatment. 

Fig. 14 The ratio of oxide bonding intensity to 

substrate intensity with different treatment. 

Table. 1 Standard formation free energy of III-V 

semiconductors and their oxide.bonding [12]. 

Fig. 15 The schematic of self 

clean mechanism in the case of 

HfO2 deposition on InGaAs 
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