Improved electrical characteristics of atomic-layer-deposited Al₂O₃/GaAs MOS capacitors with (NH₄)₂S-C₄H₉OH sulfide treatment

Hsin-Che Chiang,¹ Chao-Hsin Chien,^{1,2} Chao-Ching Cheng,¹ Ching-Lun Lin,¹ Chung-Sen Chen,¹ Guang-Li Luo,² Yi-Ling Shen,² Chi-Chung Kei,³ and Chien-Nan Hsiao³

¹Institute of Electronics, National Chiao-Tung University, Hsinchu, Taiwan 300, R.O.C.

²National Nano Device Laboratory, Hsinchu, Taiwan 300, R.O.C.

³Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan 300, R.O.C.

Tel: +886-3-5726100x7660, Fax: +886-3-5715506, E-mail: chchien@faculty.nctu.edu.tw

1. Introduction

GaAs metal-oxide-semiconductor (MOS) capacitors with different high-*k* gate dielectrics have been of more interest in recent years. Fermi-level-pinning is the most challenging issue, which arises from the remarkably high interfacial state density (D_{it}) at the interface. This problem casts some doubts on the anticipated superior electrical performance of NFETs with GaAs channel. In addition, relatively poor thermal stability needs to be cautiously tackled. As a result, additional surface passivation, such as surfur chemical treatment, Si or Ge cap layer seems unavoidably required in order to effectively reduce native oxide and D_{it} . In this study, we found that the employed (NH₄)₂S-C₄H₉OH chemical treatment can significantly improve the high-*k*/GaAs MOS capacitor performance.

2. Experimental

MOSCAP structures were fabricated on high Si-doped (n-type, $\sim 1 \times 10^{18} \text{ cm}^{-3}$) GaAs(100) substrates. At first, the GaAs was rinsed in the diluted NH₄OH (1%) solution for 1min. Furthermore, we performed (NH₄)₂S treatments in combination with either H₂O or C₄H₉OH solvent on GaAs surface prior to high-k deposition. Surface chemistry was analyzed by employing x-ray photoelectron spectroscopy (XPS) that Al $K\alpha$ is used as an excitation source. The Al₂O₃ thin film was then deposited by atomic-layer-deposited (ALD) system at 300 °C as gate dielectric followed by post deposition annealing (PDA) at 600 °C for 30 s in an O₂ ambient. Sputtered Pt dots were patterned as circular gate electrodes through the specific shadow mask with the Al for backside contact. The capacitance-voltage (C-V) and gate leakage current (I-V) curves on Pt/Al₂O₃/GaAs MOS capacitors were measured using an HP4284 and Keithley 4200, respectively.

3. Results and Discussion

Figure 1 displays As2p3 and Ga2p3 photoemission spectra with different wet-chemical cleaning processes (WCPs); the composition ratios were summarized in Table I. It was observed that both kinds of native oxides, especially for As₂O_x (x=3,5), were obviously reduced with using (NH₄)₂S solutions; moreover, dissolving the sulfide in C₄H₉OH is more effective as compared to dissolving in (H₂O). The values of As₂O_x/As_{tot}(As-As/As_{tot}) were 97.8%(30.1%) for GaAs surface with deionized water (DIW) rinse only; its value can be reduced to 52.6%(22.6%) and 38.8%(20.1%) for the sulfide solution (H₂O) and the sulfide solution (C₄H₉OH) treatments, respectively. Increasing the concentration of the sulfide solution (C₄H₉OH) can further eliminate the formation of As oxides. The effects of these surface treatments on the C-V characteristics of Al₂O₃/GaAs MOS capacitors are shown in Figs. 2(a) and 2(b), respectively. As can be seen, the C-V frequency dispersion was improved by the sulfide treatments; subsequent 600 °C PDA further improved this dispersion behavior. Here, we qualitatively examine the interface properties through the variation of $\triangle C$ and $\triangle V$ values (Fig. 3) that are defined: $\triangle C(@V_g=4V) = 1 - C(@100kHz) / C(@1kHz)$ and $\triangle V(@C_{FB}) = V_g(@1kHz) - V_g(@100kHz)$, respectively. It was observed that the sample subject to sulfide solution (C₄H₉OH) revealed the smaller \triangle C/ \triangle V and lower leakage current density (J_{o}) than that with sulfide solution (H₂O). The values of the $\triangle C$ and $\triangle V$ were 17-20% and 0.9-1.4 V for the as-deposited sample and we can improve these two values to 17-14% and 0.6-0.7 V by using 10% sulfide solution (C_4H_9OH). Fig. 4 shows the corresponding leakage current characteristics before and after 600 °C O₂-PDA. The result displayed that the GaAs capacitors through 10% sulfide solution (C₄H₉OH) treatment actually possessed the higher thermal stability due to the smaller amounts of the As-As species and As oxides. According to this chemical reaction: $As_2O_3 + GaAs \rightarrow Ga_2O_3 + 4As$, we suggested that the lower As oxides existed close to the dielectric interface should accompany with the reduced formation of the metallic As by-product after thermal processing, thus, a lower leakage current was characterized. The fabricated ALD-Al₂O₃/GaAs MOS capacitors in this work after optimized surface treatment showed the comparable insulating properties with respect to HfSiOx dielectrics reported on n-GaAs in Fig. 5.

4. Conclusions

In summary, we effectively improved the electrical properties of Pt/ALD-Al₂O₃/GaAs MOSCAP by dissolving $(NH_4)_2S$ in C₄H₉OH solvent for the chemical treatment. We found this solution did result in superior electrical characteristics than the conventional $(NH_4)_2S$ solution (H_2O) . Further optimization of the sulfide solution (C_4H_9OH) conditions for the treatment of GaAs surface prior to high-*k* deposition is seems indispensable in pursuit of superior high-performance high-*k*/GaAs MOSFETs.

References

- [1] D. Shahrjerdi et al., Appl. Phys. Lett. 89, (2006) 043501.
- [2] H. S. Kim et al., Appl. Phys. Lett. 89, (2006) 222903.
- [3] H. S. Kim, et al., Appl. Phys. Lett. 91, (2007) 042904.
- [4] M. Zhu et al., Appl. Phys. Lett. 89, (2006) 202903.
- [5] M. H. Zhang, et al., Appl. Phys. Lett. 89, (2006) 042902.

Wet Clean↔	As-As/As _{Total} +	As-S/As _{Total}	Ga-S/Ga _{Totel} e	As ₂ O _x /As _{Total}	$Ga_2O_x/Ga_{Total^{4^2}}$
D.I water only	30.1 % ₽	-	-+J	97.8 %	54.3 % ₽
NH4OH only.	23.5 %+2	-	-+7	73.4 %	25.8%⇔
1% Sulf.(H2O).,	22.6 %₽	18.9 %	7.1 %₽	52.6 %	26.4 % ↔
1%Sulf.(C4HPOH).	20.1 %	17.8 %	7.3 %₽	38.8 %	22.7 %+2
10% Sulf. (C4H0OH)	13.9 % ₽	16.3 %	10.9 %+?	23.2 %	24.6 %+2

[6] S. I. Park, *et al.*, Appl. Phys. Lett. **91**, (2007) 082908.
[7] M. K. Lee *et al.*, J. Electrochem. Soc. **153**, (2006) F266.

Table. 1 Chemical ratios calculated by XPS fitting results according to the different WCPs in Fig. 1.A s 2 p 3

Fig. 1 As2*p3* and Ga2*p3* XPS spectra of GaAs surface receiving various WCPs: (a) DIW only, (b) NH₄OH only, (c)1%-Sulf.(H₂O), (d) 1%-Sulf.(C₄H₉OH), and (e) 10%-Sulf.(C₄H₉OH). Note that the cleaned surface was exposed to air for 30 min.

Fig. 2 Multi frequency C-V curves of Pt/Al₂O₃/n-GaAs capacitors with (a) different WCPs and (b) different WCPs and O₂ annealing.

Fig. 3 variations of $\triangle C$ and $\triangle V$ values of Pt/Al₂O₃/n-GaAs capacitors after different WCPs and post annealing.

Fig. 4 Gate leakage current characteristics of $Pt/Al_2O_3/n$ -GaAs capacitors with different WCPs. The Al_2O_3 thin films were deposited at 300 °C for 60 cycles.

Fig. 5 Comparison of J_g versus CET or EOT characteristics in this work with other's published data.