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1. Introduction 

A CdF2/CaF2 heterostructure is an attractive candidate 
for quantum applications on Si substrates, such as resonant 
tunneling diodes (RTDs)[1] and coulomb blockade devices, 
because of the large conduction band discontinuity 
(ΔEC~2.9eV) at the heterointerface [2] and small lattice 
mismatch with silicon. Due to the large ΔEC, leakage cur-
rent is expected to be suppressed in low level even at room 
temperature and moreover, voltage for tunneling transport 
can be reduced by utilizing multi-quantum-well tunneling  
scheme such as resonant tunneling or sequential tunneling 
with appropriate design of quantum-well layer thickness 
sequences. Up to now, we have demonstrated large 
peak-to-valley current ratio (PVCR) of CdF2/CaF2 RTDs 
larger than 105 at RT [3], which confirmed advantage of the 
large ΔEC. heterostructure material systems.  

In this paper, we have proposed and demonstrated 
metal-oxide-semiconductor field effect transistor (MOS-
FET) integrated structures with CdF2/CaF2 resonant tun-
neling floating gate. 

 

2. Structure 
Schematic device structures are shown in Fig.1(a). 

MOSFET structures are fabricated on p-type (~1016cm-3) 
silicon-on-insulator (SOI) with 200 nm in thickness. Gate 
length is 5 μm and width is 50 μm with n-type (1016cm-2) 
source and drain region. CdF2/CaF2 triple barrier resonant 
tunneling structures are grown in hole array of 100 nm in 
diameter with 250 nm-interval formed in 10 nm-thick SiO2 
gate oxide region as shown in Fig.1(b). Limitation of crys-
tal growth region in nano-area holes significantly enhance 
high-quality epitaxial growth of CdF2/CaF2 heterostructures 
especially on Si(100)[4,5]. Au/Al is used as gate electrode. 

Resonant tunneling floating gate regime enable reduc-
tion of gate voltage for charge injection and ejection. Elec-
trons are injected from gate metal (Al) into CdF2 quan-
tum-well through resonant tunneling and trapped due to 
energy relaxation by scattering. Trapped carriers are ejected 
by reverse bias through tunneling. In the result, write/erase 
voltage can be reduced by resonant tunneling with keeping 
long retention time under off-resonance bias condition.  
 
3. Fabrication 

SiO2 hole arrays for gate RTDs were pattered by elec-
tron-beam lithography and wet etching using HF.  

The protective oxide layer (in the growth region) was 
removed in an ultrahigh-vacuum (<10-7Pa) chamber by 
thermal heating with a Si flux at 700°C. Subsequently, a 

1.6-nm-thick CaF2 layer was grown at 120°C and thermally 
annealed at 500°C for 10 min in a molecular beam epitaxy 
(MBE) chamber for solid phase epitaxy. Subsequently, a 
4.3-nm-thick CdF2 quantum-well layer, 1.6-nm-thick CaF2 
layer, 1.6-nm-thick CdF2 quantum-well layer and 
1.6-nm-thick CaF2 top barrier layer was grown at 80°C. 
Finally, Al/Au electrodes were formed by lift-off. 
 
4. Results and discussions 

In the measurement of ID-VD curve shown in Fig. 2, 
threshold voltage shift was clearly observed in the variation 
of drain current more than 50%, corresponding to charged 
state and non-charged state of RTD gate structures. Figure 
3 shows IG-VD curve, which clearly shows electron injec-
tion gate current at VD = 15V and discharge current at 
around VD = 0 V, respectively. These behaviors are consis-
tent with negative differential resistance characteristics of 
RTD structures of the same layer structures. From the theo-
retical analysis of potential distribution around the channel, 
charge density of RTD region was evaluated. 

 
5. Conclusion 

We have fabricated MOSFET structures with 
CdF2/CaF2 triple barrier resonant tunneling floating gate 
and demonstrated fundamental memory operation by 
threshold voltage shift corresponding charged and dis-
charged state of CdF2/CaF2 heterostructures. These results 
are mile stone for device application of Fluorite based het-
erostructures integrated with Si-MOSFET technologies. 
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