Low Voltage and Small Subthreshold Swing HfLaO/Pentacene Organic TFTs

M. F. Chang¹, P. T. Lee² and Albert Chin⁴

¹Dept. of Photonic and Inst. of Electro-Optical Eng., National Chiao-Tung University, Hsinchu, Taiwan, ROC
²Dept. of Electronics Eng., National Chiao-Tung University, Hsinchu, Taiwan, ROC
⁴Nano-Electronics Consortium of Taiwan, ROC E-mail: albert_achin@hotmail.com

1. Introduction

Pentacene based organic thin-film transistors (OTFTs) [1]-[2] have attracted much attention beyond poly-Si TFTs [3]-[5] for low-cost light-weight displays and flexible ICs. However, the fundamental challenges for OTFTs are the high threshold voltage (V_T) and poor subthreshold swing (SS). The OTFTs are generally operated at high voltage of >15 V that is not suitable for low voltage and low power ICs. The poor SS slows down the switching speed of inverters used in logic circuits. In this paper, we have addressed these issues by first examining the V_T relation:

$$V_T = \phi_{ax} - \frac{Q_{tot}}{C_{ox}} - \frac{Q_{dep}}{C_{ox}} + 2\phi_F$$ (1)

The depletion charge (Q_{dep}) is much smaller than the total oxide charge (Q_{tot}) of dielectric on pentacene that contains high-density interface charge (Q_i), fixed oxide charge and oxide-trapped charge. Since the low temperature deposited dielectric has inevitable poor quality of both bulk oxide and oxide-pentacene interface, the Q_{tot} is much larger than the SiO$_2$ on Si to lead the unwanted high V_T. To achieve the needed low V_T, here we have largely increased the oxide capacitance ($C_{ox}=\varepsilon_0\varepsilon/k/t_{ox}$) by using higher k HfLaO [6] dielectric with thin thickness (t_{ox}). The high C_{ox} can also improve the SS by:

$$SS = \frac{kT/q \times ln10 \times [1+(C_{ox}+C_{dep})/C_{ox}]}{1+2\phi_F}$$ (2)

The HfLaO/pentacene OTFTs showed a record low SS of only 0.08 V/decade, a low V_T of -1.3 V, good field-effect mobility (μ_{FE}) of 0.73 cm2/Vs and a large I_{on}/I_{off} of 1.2×105. This was achieved by using high gate capacitance density of 950 nF/cm2, where the leakage current was decreased by applying a NH$_3^+$ plasma treatment on TaN gate electrode.

2. Experiments

The devices were fabricated on SiO$_2$/Si substrates. The TaN gate electrode of 50 nm was first deposited through a shadow mask by reactive sputtering. The TaN surface was treated by NH$_3^+$ plasma to reduce the dielectric leakage current [7]. Then 20-nm HfLaO was deposited by PVD and O$_2$ PDA at 350 °C for 10 min. After that, 70 nm thick pentacene active layer was deposited at 70°C with small 0.5 Å/s rate under 3×10$^{-5}$ torr. Finally, Au source-drain electrodes were deposited by thermal evaporation and patterned by shadow mask. Besides, metal-insulator-metal (MIM) Au/HfLaO/TaN capacitor was also fabricated to analyze the leakage current and the dielectric properties.

3. Results and Discussion

Fig. 1 shows the schematic diagram of the HfLaO/pentacene OTFTs and MIM devices. Fig. 2 shows the J-V characteristics of Au/HfLaO/TaN capacitors. The NH$_3^+$ treatment improves the leakage current of both electron injection from top Au/HfLaO and bottom HfLaO/TaN with close capacitance density shown in Fig. 3. It is important to notice that the leakage current is much worse as electron injected from bottom interface, which is consistent with previous Analog/RF and DRAM MIM capacitors [7]. However, such bottom electron injection is needed for the negative V_D used in p-MOSFET. Figs. 4, 5 and 6 compare the I_D-V_D and I_D-V_G characteristics of HfLaO/pentacene p-MOSFETs with and without NH$_3^+$ treatment on TaN gate. The device with NH$_3^+$ treatment improves I_D on-current (I_{on}), SS and off-current (I_{off}) simultaneously. Record small SS of only 0.08 V/decade is measured, and the small V_T of -1.3 V allows the device to operate at -2 V. Note that the I_{on} improvement is not due to the pentacene, since the surface roughness and grain sizes shown in Fig. 7 is similar without and with NH$_3^+$ treatment. Table 1 summarizes the comparison of p-channel HfLaO/Pentacene OTFTs with n-channel poly-Si TFTs. The performance of this NH$_3^+$-treated p-channel HfLaO/pentacene OTFTs is comparable with that of n-channel SiO$_2$/poly-Si TFTs using LPCVD and PECVD TEOS oxides [3]-[5]. The excellent device integrity of record low SS of 0.08 V/decade and low V_T of -1.3 V are simply due to the very high C_{ox} of 950 nF/cm2 in HfLaO dielectric that lowers $(C_{ox}+C_{dep})/C_{ox}$ and Q_{tot}/C_{ox} terms in eq. (2) and (1), respectively. The TaN treatment on TaN surface is vital to decrease the leakage current at such high C_{ox} density, which is the basic challenge for MIM capacitors [7]. The much lower thermal budget for OTFT fabrication than Si-TFT is highly favorable for environment energy conservation.

4. Conclusions

Low V_T, low operation voltage, small SS and good mobility are achieved in HfLaO/pentacene OTFTs with NH$_3^+$ treatment on TaN gate electrode.

References

Table 1 Comparison of p-channel HfLaO/pentacene OTFTs with n-channel poly-Si TFTs.

<table>
<thead>
<tr>
<th>Gate dielectric</th>
<th>HfLaO</th>
<th>LPCVD SiO(_2)</th>
<th>PECVD</th>
<th>PECVD TEOS oxide</th>
<th>PECVD</th>
<th>PECVD TEOS oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_i) (nF/cm(^2))</td>
<td>950</td>
<td>43.1</td>
<td>57.5</td>
<td>86.3</td>
<td>693.5</td>
<td>862.8</td>
</tr>
<tr>
<td>(V_T) (V)</td>
<td>1.3</td>
<td>5.6</td>
<td>8.14</td>
<td>-</td>
<td>0.73</td>
<td>20</td>
</tr>
<tr>
<td>(\mu_F) (cm(^2)/V s)</td>
<td>0.08</td>
<td>1.4</td>
<td>1.97</td>
<td>2.67</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\mu_F C_i) (nF/cm(^2))</td>
<td>693.5</td>
<td>862.8</td>
<td>715.7</td>
<td>258.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(I_{on}/I_{off})</td>
<td>(1.2\times10^5)</td>
<td>(3.5\times10^5)</td>
<td>(2.97\times10^5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>