Electrical Characteristics of TiO₂/Al₂O₃/TiO₂ Stacked Films

Hikaru Hara¹, Masami Tanioku², Masaki Yamato¹ and Takamaro Kikkawa¹

¹Research Institute for Nanodevice and Bio Systems, Hiroshima University,

1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

Phone: +81-82-424-6265 E-mail: hikaru-hara@hiroshima-u.ac.jp, kikkawat@hiroshima-u.ac.jp

²Elpida Memory, Inc.,

7-10 Yoshikawakogyodanchi, Higashi-Hiroshima, Hiroshima 739-0198, Japan

1. Introduction

It becomes very difficult for gigabit dynamic random access memories (DRAM's) to keep sufficient capacitance per unit cell. Therefore, it is needed for 40 nm technology to satisfy small equivalent oxide thickness (EOT) less than 0.5 nm and low leakage current less than 10^{-8} A/cm². To satisfy these requirements, we focus on two dielectric materials such as TiO₂ having larger dielectric constant but smaller band-gap and Al₂O₃ having larger band-gap but lower dielectric constant [1]. In this study, we investigated the leakage current characteristics of TiO₂ and Al₂O₃, and the electrical characteristics of Al₂O₃-TiO₂ mixed and stacked structures.

2. Experiment

Metal-Insulator-Metal (MIM) capacitor was formed on SiO₂/Si substrates. Platinum (Pt) was deposited as both top (ϕ =1.6 mm) and bottom electrodes. TiO₂ and Al₂O₃ films were deposited by RF magnetron sputtering by use of Al₂O₃ and TiO₂ targets, respectively. The gas mixture ratio of Ar and O₂ was Ar:O₂=1:1. The substrate temperature was 300°C. RF powers of sputtering for Al₂O₃ and TiO₂ were 70 W and 150 W, respectively. The post-deposition annealing in O₂ ambient was performed at the temperature of 600°C.

3. Results and discussion

Figure 1 shows equivalent oxide thickness (EOT) versus physical thickness for TiO₂ film. From this slope, relative dielectric constant of TiO₂ was calculated to be approximately 88.4. The dielectric constant of TiO_2 decreased with decreasing the physical thickness (Fig. 2). Figure 3 shows physical thickness dependence of leakage current density versus electric field. Leakage current modes were distributed by the physical thickness such as thick film (more than 40 nm), thin film (6.7-17.7 nm) and very thin film (less than 5.4 nm). A crystalline peak due to rutile phase of TiO₂ was observed in the films whose thicknesses were greater than 37.4 nm (Fig. 4). On the other hand, the films which were less than 18.2 nm had no peak due to TiO₂. Therefore, because of crystallization, 40 nm-thick TiO₂ had large leakage current. Figures 5 and 6 show temperature dependences of leakage current for 17.7 and 5.4-nm thick TiO₂ films, respectively. For each thickness of the TiO₂ film, the leakage current depends on the temperature at high electric field, significantly. The leakage current of Frenkel-Poole (FP) emission (J_{FP}) is expressed as

$$J_{\rm FP} \sim E \exp\left[\frac{-q(\Phi_{\rm B} - \sqrt{qE/\pi\varepsilon_i})}{kT}\right],\tag{1}$$

where E is the electric field, q is the unit electric charge, $\Phi_{\rm B}$ is the barrier height, ε_i is the insulator permittivity and k is the Boltzmann constant. The Frenkel-Poole plot yields a straight line at high electric field and can derive a more favorable ε_i (around 1.4 ε_0) than that of Schottky plot as shown in Fig. 7 [2]. Therefore, the conduction mechanism of 17.7-nm thick TiO₂ film is FP emission at high electric field. Figure 8 shows Arrhenius plot of FP emission for 17.7-nm thick TiO₂ film. From these slopes, the $\Phi_{\rm B}$ of FP emission for 17.7-nm thick TiO₂ was estimated to be 1.38 eV (Fig. 9). The Φ_B of FP emission for 40 and 4.5 nm-thick TiO_2 were also estimated to be 1.13 and 1.30 eV, respectively. Though the Φ_B of 5.4 nm-thick TiO₂ was high, leakage current was large at low electric field due to direct tunneling current. Temperature dependence of leakage current for Al₂O₃ film is shown in Fig. 10. The leakage current of Al₂O₃ film had little dependence on the temperature at high electric field. The plot of $\ln(J/E^2)$ versus 1/E became a straight line as shown in Fig.11. Therefore, the conduction mechanism at high electric field is Fowler-Nordheim (F-N) tunneling [1]. The electrical characteristics of $TiO_2/Al_2O_3/TiO_2$ stacked films were investigated. Figure 12 shows Al content dependence of leakage current density versus electric field. The leakage current of the TiO₂/Al₂O₃/TiO₂ stacked film decreased with increasing the Al content. Electric field (@ J=10⁻⁸ A/cm²) versus dielectric constant for TiO₂/Al₂O₃/TiO₂ stacked film is shown in Fig. 13. The electric field (@ $J=10^{-8}$ A/cm²) decreased with increasing the dielectric constant. The maximum effective dielectric constant was 51. Figure 14 shows voltage (@ J=10⁻⁸ A/cm²) versus EOT for several film structures. The TiO₂/Al₂O₃/TiO₂ stacked film had high electric field (@ J=10⁻⁸ A/cm²) in comparison with the other structures having the same EOT. Consequently, the EOT of 0.58 nm with leakage current of 10^{-8} A/cm² at 0.93 V was obtained by use of TiO₂/Al₂O₃/TiO₂ structure with thickness of 3.5/0.6/3.5 nm.

4. Conclusion

The leakage current mechanisms of TiO_2 and Al_2O_3 were Frenkel-Poole emission and F-N tunneling, respectively. Since direct tunneling was dominant for TiO_2 film with the thickness less than 5.4 nm, the minimum EOT of 0.58 nm was obtained by use of $TiO_2/Al_2O_3/TiO_2$ structure.

References

[1] Lu *et al.*, Appl. Phys. Lett. 90,082911 (2007)
[2] M. Yamato *et al.*, Jpn. J. Phys., Vol. 43, No. 8A (2004)

Fig. 12. Al content dependence of leakage current density versus electric field.

Fig. 13. Electric field (@ J=10⁻⁸ A/cm²) versus dielectric constant for TiO₂/Al₂O₃/TiO₂ film.

Fig. 14. Voltage (@ J=10⁻⁸ A/cm²) versus EOT for several film structures.

4.0

3.0

of