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1. Introduction 
A new emerging field in electronics is the development 

of biosensor system-on-a-chip (SoC) applications [1]-[2]. 
These kinds of SoCs can be implemented as programmable 
and automated processors for biological and 
pharmaceutical analysis, as shown in Fig 1. As the advance 
of semiconductor technology, the SoC can integrate 
different functional units. However, much care has to be put 
in the design of embedded signal processor which has to 
provide real-time processing capabilities in order to deal 
with complex systems composed of sensors, actuators, 
signal conditioning and processing circuits. Moreover, 
programmability and reconfigurability are key design 
features to get a flexible and reusable architecture. There 
are already many existing programmable DSPs [3]-[4]. But 
they do not focus on design-reuse. System-on-chip 
designers can not use them in their design. Our proposed 
embedded signal processor can help the designers to 
translate their signal processing algorithms to actual 
systems quickly such as a noise reduction filter. In addition, 
our design is aimed at a fully synthesizable signal processor, 
which can be easily embedded into a biosensor system. 
 

2. Proposed VLSI Architecture 
In this paper, this proposed DSP uses an advanced modified 
Harvard architecture that maximizes processing power with 
seven buses. Separate program memory, data memory, and 
coefficient memory allow simultaneous access to program 
instructions and data, providing a high degree of 
parallelism. For example, two data reads and one 
instruction read can be performed in a single cycle. 
Instructions with parallel memory access and arithmetic 
execution utilize this architecture. For flexibility, data can 
be transferred between data and coefficient memories. 
There are specialized computational units to support 
powerful arithmetic, logic, and bit-manipulation operations. 
Also, the DSP includes the control mechanisms to manage 
interrupts, repeated operations, and function calling. Fig.2 
shows the architecture of this DSP. 

In order to maximize the throughput, the DSP employs 
a five-stage instruction pipeline (excluding MAC-type 
instructions) divided as follows: 1) program prefetch, 2) 
program fetch, 3) instruction decode, 4) operand address 
generation, 5) execute/write back. Because the delay of the 
multiplier-accumulator is very long and in order to balance 
the delay of each pipeline stage, the MAC-type instructions 

uses the fifth stage to perform multiplication and another 
stage (sixth stage) to perform accumulation. With this 
arrangement, the throughput of the DSP is not restricted to 
the MAC. Excluding the two-stage pipelined 17x17-bit 
MAC, there are two arithmetic units. One is ALU, and the 
other is shifter. They are arranged to operate in parallel. 
And each unit has input registers to latch the operands from 
the data bus (DB), and result registers to latch the 
computation result. These result registers drive the internal 
bus (R-Bus), and R-Bus is drawn back to each 
computational unit without passing the input registers. So 
the result generated by any arithmetic unit can be the 
operand of any arithmetic unit at the next cycle. The input 
and output of the input registers and result registers are all 
connected to DB-Bus (Data Bus), so the data in registers or 
in memory can be loaded into any register through DB. 
Because the data can be transferred among the registers of 
the three arithmetic units, and any output register can offer 
the operand to any arithmetic unit, these registers can be 
regarded as a register file. This feature makes programmers 
get more flexibility.  

The ALU performs a standard set of arithmetic and 
logic operations in addition to division primitives. The 
MAC performs multiply, multiply/add, and 
multiply/subtract operations. The shifter performs logical 
and arithmetic shift, normalization, denormalization, and 
derive-exponent operations. The two-stage pipelined MAC 
is adopted in this DSP in order to release the long delay of 
it. However it results in a type of data hazard (called 
MAC-type hazard), while an instruction I1 uses the result 
of the MAC instruction, which is just one instruction before 
I1, as its source. When the hazard happens, I1 and the 
instructions following it must be delayed on cycle to 
protect the pipeline correctness. There is the other type of 
data hazard happened, while an instruction loading data 
into the register in a DAG is followed by the instruction 
using the same DAG to access memory. The resolving 
method is the same as the first type of data hazard. So the 
hardware overhead of using two-stage pipelined MAC is 
only to add the MAC-type hazard detector. And the 
two-stage pipelined MAC makes the DSP operate at higher 
frequency. 

There are two data address generators (DAGs) in this 
DSP. They are used to indicate the memory address that the 
programmers may access separately. Because they can act 
independently, the DSP can access two operands in one 
clock cycle. They both contain a special circuit to support 
circular addressing, which is useful when the DSP is 
performing filtering operations. And a bit-reverse circuit is 
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added to DAG1 to support the bit-reversal addressing 
which is useful when the DSP performs FFT operations. 

There are two control units controlling the whole DSP. 
The Program Sequencer controls the flow of the program, 
and the Central Controller controls the operations of each 
instruction. Program Sequencer decides which instruction 
to be fetched and generates its address. It also contains an 
interrupt controller. It manages not only the call, jump, 
return, and interrupt but also hardware zero-overhead 
looping. Because typical signal processing programs 
contain a lot of loops, there is a special circuit to control the 
program flow when the DSP enters a loop. Also, there are 
some registers to store the mode and status of the DSP in 
this unit. In this DSP, we use two level controllers to 
control each circuit. The central controller is the first level, 
and the sub-controller in each block is the second level. The 
function of the central controller is to decode the instruction 
into sub-codes and dispatch the sub-codes to the 
sub-controller of each block. Due to the two level 
controllers, the control signals between blocks can be 
reduced very much, and the two level controllers can be 
arranged to act on different pipeline stage to release the 
decoding delay. In this DSP, they occupy two consecutive 
pipeline stages. The central controller also takes response 
for the pipeline flushing at the discontinuity of PC 
(Program Counter). 
 
3. Performance Analysis 
The function of every instruction of the DSP is completely 
verified from the front end to back to the back end. We also 
simulate some kernel operations of the most digital signal 
processing applications. They are a 56-tap lowpass FIR 
filter, a 4-tap lowpass IIR filter, a 21-tap LMS adaptive 
filter, and 128-points FFT. And while executing the three 
kernel operations, the performance of the DSP is listed in 
Table 1 with comparison to other DSPs, where N is the 
order of the filter, A,B are constant, and X indicates that the 
author did not mention the operation. The DSP processor is 
implemented using TSMC CMOS technology. It can 
operate at 100 MHz. The chip layout and its features are 
shown in Fig. 3 and Table 2, respectively. 
 

4. Conclusion 
This paper proposed a fixed-point, low-cost and fully 
synthesizable programmable DSP. It can provide real-time 
processing capabilities in order to deal with complex 
systems composed of sensors, actuators, signal 
conditioning and processing circuits for biosensor 
system-on-chip applications. From implementation results, 
it is suitable to be integrated on a system-on-a-chip. 
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Fig.1 Block diagram of biosensor system. 

 

 
 Fig.2 Architecture of DSP processor core. 

 
Table 1. Performance comparison. 

 
 

 
Fig. 3. Chip layout. 

 
Table 2. Chip features 
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