
Embedded Signal Processor Design for Biosensor System-on-a-chip
applications

Yeong-Kang Lai, Yu-Chieh Chung, Yu-Fan Lai, and Chen-Lung Hwang

Department of Electrical Engineering, National Chung Hsing University

No.250, Kuo Kuang Road, Taichung, Taiwan
Phone: 886-4-22855268 E-mail: yklai@dragon.nchu.edu.tw

1. Introduction
A new emerging field in electronics is the development

of biosensor system-on-a-chip (SoC) applications [1]-[2].
These kinds of SoCs can be implemented as programmable
and automated processors for biological and
pharmaceutical analysis, as shown in Fig 1. As the advance
of semiconductor technology, the SoC can integrate
different functional units. However, much care has to be put
in the design of embedded signal processor which has to
provide real-time processing capabilities in order to deal
with complex systems composed of sensors, actuators,
signal conditioning and processing circuits. Moreover,
programmability and reconfigurability are key design
features to get a flexible and reusable architecture. There
are already many existing programmable DSPs [3]-[4]. But
they do not focus on design-reuse. System-on-chip
designers can not use them in their design. Our proposed
embedded signal processor can help the designers to
translate their signal processing algorithms to actual
systems quickly such as a noise reduction filter. In addition,
our design is aimed at a fully synthesizable signal processor,
which can be easily embedded into a biosensor system.

2. Proposed VLSI Architecture
In this paper, this proposed DSP uses an advanced modified
Harvard architecture that maximizes processing power with
seven buses. Separate program memory, data memory, and
coefficient memory allow simultaneous access to program
instructions and data, providing a high degree of
parallelism. For example, two data reads and one
instruction read can be performed in a single cycle.
Instructions with parallel memory access and arithmetic
execution utilize this architecture. For flexibility, data can
be transferred between data and coefficient memories.
There are specialized computational units to support
powerful arithmetic, logic, and bit-manipulation operations.
Also, the DSP includes the control mechanisms to manage
interrupts, repeated operations, and function calling. Fig.2
shows the architecture of this DSP.

In order to maximize the throughput, the DSP employs
a five-stage instruction pipeline (excluding MAC-type
instructions) divided as follows: 1) program prefetch, 2)
program fetch, 3) instruction decode, 4) operand address
generation, 5) execute/write back. Because the delay of the
multiplier-accumulator is very long and in order to balance
the delay of each pipeline stage, the MAC-type instructions

uses the fifth stage to perform multiplication and another
stage (sixth stage) to perform accumulation. With this
arrangement, the throughput of the DSP is not restricted to
the MAC. Excluding the two-stage pipelined 17x17-bit
MAC, there are two arithmetic units. One is ALU, and the
other is shifter. They are arranged to operate in parallel.
And each unit has input registers to latch the operands from
the data bus (DB), and result registers to latch the
computation result. These result registers drive the internal
bus (R-Bus), and R-Bus is drawn back to each
computational unit without passing the input registers. So
the result generated by any arithmetic unit can be the
operand of any arithmetic unit at the next cycle. The input
and output of the input registers and result registers are all
connected to DB-Bus (Data Bus), so the data in registers or
in memory can be loaded into any register through DB.
Because the data can be transferred among the registers of
the three arithmetic units, and any output register can offer
the operand to any arithmetic unit, these registers can be
regarded as a register file. This feature makes programmers
get more flexibility.

The ALU performs a standard set of arithmetic and
logic operations in addition to division primitives. The
MAC performs multiply, multiply/add, and
multiply/subtract operations. The shifter performs logical
and arithmetic shift, normalization, denormalization, and
derive-exponent operations. The two-stage pipelined MAC
is adopted in this DSP in order to release the long delay of
it. However it results in a type of data hazard (called
MAC-type hazard), while an instruction I1 uses the result
of the MAC instruction, which is just one instruction before
I1, as its source. When the hazard happens, I1 and the
instructions following it must be delayed on cycle to
protect the pipeline correctness. There is the other type of
data hazard happened, while an instruction loading data
into the register in a DAG is followed by the instruction
using the same DAG to access memory. The resolving
method is the same as the first type of data hazard. So the
hardware overhead of using two-stage pipelined MAC is
only to add the MAC-type hazard detector. And the
two-stage pipelined MAC makes the DSP operate at higher
frequency.

There are two data address generators (DAGs) in this
DSP. They are used to indicate the memory address that the
programmers may access separately. Because they can act
independently, the DSP can access two operands in one
clock cycle. They both contain a special circuit to support
circular addressing, which is useful when the DSP is
performing filtering operations. And a bit-reverse circuit is

Extended Abstracts of the 2008 International Conference on Solid State Devices and Materials, Tsukuba, 2008,

-658-

P-11-10L

pp. 658-659

added to DAG1 to support the bit-reversal addressing
which is useful when the DSP performs FFT operations.

There are two control units controlling the whole DSP.
The Program Sequencer controls the flow of the program,
and the Central Controller controls the operations of each
instruction. Program Sequencer decides which instruction
to be fetched and generates its address. It also contains an
interrupt controller. It manages not only the call, jump,
return, and interrupt but also hardware zero-overhead
looping. Because typical signal processing programs
contain a lot of loops, there is a special circuit to control the
program flow when the DSP enters a loop. Also, there are
some registers to store the mode and status of the DSP in
this unit. In this DSP, we use two level controllers to
control each circuit. The central controller is the first level,
and the sub-controller in each block is the second level. The
function of the central controller is to decode the instruction
into sub-codes and dispatch the sub-codes to the
sub-controller of each block. Due to the two level
controllers, the control signals between blocks can be
reduced very much, and the two level controllers can be
arranged to act on different pipeline stage to release the
decoding delay. In this DSP, they occupy two consecutive
pipeline stages. The central controller also takes response
for the pipeline flushing at the discontinuity of PC
(Program Counter).

3. Performance Analysis
The function of every instruction of the DSP is completely
verified from the front end to back to the back end. We also
simulate some kernel operations of the most digital signal
processing applications. They are a 56-tap lowpass FIR
filter, a 4-tap lowpass IIR filter, a 21-tap LMS adaptive
filter, and 128-points FFT. And while executing the three
kernel operations, the performance of the DSP is listed in
Table 1 with comparison to other DSPs, where N is the
order of the filter, A,B are constant, and X indicates that the
author did not mention the operation. The DSP processor is
implemented using TSMC CMOS technology. It can
operate at 100 MHz. The chip layout and its features are
shown in Fig. 3 and Table 2, respectively.

4. Conclusion
This paper proposed a fixed-point, low-cost and fully
synthesizable programmable DSP. It can provide real-time
processing capabilities in order to deal with complex
systems composed of sensors, actuators, signal
conditioning and processing circuits for biosensor
system-on-chip applications. From implementation results,
it is suitable to be integrated on a system-on-a-chip.

References
[1] N. Manaresi, G. Medoro, M. Tartagni, L. Altomare, and R.

Guerrieri, “Microelectronics Meets Biology: Challenges and
Opportunities for Functional Integration in Lab-on-achip”.
European Solid State Devices Research Conference - Euro-
pean Solid State Circuits Conference (ESSDERCESSCIRC),

pages 31–36, September 2002.
[2] G. Medoro, A. Leonardi, L. Altomare, N. Manaresi,M. Tart-

agni, and R. Guerrieri, “A Lab-on-a-chip for Cell Detection
and Manipulation”. IEEE Sensors, June 2002.

[3] Wai Lee et al., "A 1-V Programmable DSP for Wire-
less Communications," IEEE J. Solid-State Circuits,
vol. 32, no. 11, pp. 1766-1774, Nov. 1997.

[4] F. Campi, R. Canegallo, and R. Guerrieri,
“IP-Reusable 32-Bit VLIWRisc Core”. European Solid
State Circuits Conference(ESSCIRC), pages 456–459,
September 2001.

Fig.1 Block diagram of biosensor system.

 Fig.2 Architecture of DSP processor core.

Table 1. Performance comparison.

Fig. 3. Chip layout.

Table 2. Chip features

-659-

