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1. Introduction 

Recently, a great deal of attention has been paid on CMOS 
LSI-based biomedical sensors especially for in vivo sensing and 
imaging applications [1, 2]. For such implantable devices, low 
power consumption and low operating voltage are required for the 
sake of long term in vivo operation with battery or wireless 
electrical power distribution with limited capacity.  

We have proposed pulse-width-modulation (PWM) 
pixel-readout scheme as a powerful solution for the 
bioimplantable imaging devices with low voltage operation and 
low-power-consumption and demonstrated fundamental 
characteristics of a fabricated imager with 128 x 96 pixels  [3, 4]. 
In this work, we describe the architecture of our PWM image 
sensor in detail to increase the pixel number from 128x96 to 
352x288 and discuss some essential issues to improve the sensor 
performance. 

 
2. Operation Principle of the PWM sensor 

Fig. 1 shows pixel circuit and a timing diagram of the 
proposed PWM imaging scheme. In the PWM sensor, a 
photodiode voltage VPD is compared with a ramp signal. The 
timing of digital transition of the comparator depends on VPD. 
Thus, the photodiode voltage was transformed into pulse width. 
The capacity of a power supply can be reduced since the 
comparator consumes electrical power only around their threshold 
voltages. 

In this scheme, signal-to-noise ratio (SNR) is less affected by 
the reduction of power supply voltage. The benefit comes from 
low input-referred jitter noise since the in-pixel comparator has a 
large gain compared with conventional image sensor using source 
follower circuit its gain is less than one. Fig. 2 shows the sample 
of the captured image by the prototype PWM sensor [3]. 

It is generally considered that PWM scheme is 
disadvantageous from the viewpoint of a pixel size [4]. To shrink 
the pixel size, we have adopted a 3 transistor/pixel configuration 
including a one-transistor in-pixel comparator MAMP, as shown in 
Fig.1. The in-pixel comparator MAMP is always biased during 
readout period, and the bias current is a main factor of pixel power 
consumption. We have also proposed and demonstrated a 
low-power pixel with our PWM sensor based on dynamic 
operation of in-pixel comparators, and successfully reduced the 
power consumption in pixel array [5].  

 
3. Design of the PWM sensor 

We have designed a PWM sensor with a 0.35μm 2-poly, 

3-metals standard CMOS technology. Fig. 3 shows a photograph 
of the fabricated sensor. The specifications of the PWM sensor 
chip are summarized in table I. In this design, some improvements 
were implemented from the prototype sensor [3]. First, we have 
increased the pixel number from 128×96 to 352×288 which 
corresponds to Common Intermediate Format (CIF) size. The 
power-supply voltage was reduced from 1.4V for prototype sensor 
to 1.2V for the present sensor with an aim of operation with a 
button-battery.  

Second, we have lowered the resistance of the ramp signal 
line to suppress the effect of the IR drop. The horizontal ramp 
signal line has a finite resistance. Since, all the bias currents for 
the pixels in a same row are gathered into the ramp signal line, the 
ramp signal voltage depends on the horizontal pixel position due 
to IR drop (Fig. 4). To avoid this readout error of the pixel value, 
we have to take care of an IR drop at the horizontal ramp signal 
line while readout period. The error of the ramp signal by 
ΔVramp,IRdrop is denoted as follows. When all the in-pixel 
comparators are on, the maximum ΔVramp,IRdrop appears at the 
farthest pixel. It is expressed by 
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Note that RPIX, Ib, and NX are resistance of the ramp signal line for 
each pixel, bias current for the in-pixel comparator, and the 
number of the horizontal pixels. Here, Ib is denoted by  
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Where fr, NY, Csig are frame rate, number of vertical pixels, and 
parasitic capacitance of the vertical signal line. We assume that 
the ADC period is equal to the one-horizontal period. α means the 
rate of the transition period of the comparator. It is denoted by 
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To suppress the error smaller than 1/2 LSB, we have to lower the 
wiring resistance of ramp signal line in the layout. The maximum 
acceptable resistance of RPIX is expressed by equation (4). In this 
work, the ramp signal line consists of parallel-configured metal 1, 
2, 3 layers to lower the resistance. 
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Third, we have improved the bootstrap circuit to suppress the 
variation of the reset level. The prototype sensor had a bootstrap 
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circuit to pull up the gate voltage of the reset transistor MRST and 
the row select transistor MSEL during reset period [3]. It required a 
larger voltage than Vramp,rst+2Vth , which is higher than the power 
supply voltage. The reset transistor MRST couples the clock 
transitions to the photodiode capacitance through its gate-source 
overlap capacitance. After the reset period, the bootstrapped 
voltage drops by the clock feedthrough. The effect of the clock 
feedthrough causes a variation of the reset level of the photodiode. 
To suppress the effect of the clock feedthrough, we have also 
improved the bootstrap circuit to extend the fall time. The time 
from beginning the fall of the bootstrapped voltage to finishing 
completely is defined as the fall time. Fig. 5 shows output signals 
of the previous and the present bootstrap circuit simulated by 
spice. 

Table I  Specifications of PWM sensor chip 

Technology 
Chip size 

Pixel count 
Pixel size 
Frame rate 
Fill factor 

ADC resolution 
Supply voltage 

0.35 μm 2P3M CMOS 
9.8 x 9.8mm2 

368×320 (CIF) 
10μm x 10μm 

30 fps 
18.5 % 
10 bit 
1.2 V 
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Fig. 4 IR drop at horizontal ramp signal line. 
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)Fig. 1 Pixel circuits of PWM image sensor and the timing diagram 
 

 

Fig. 5 Spice simulation results of bootstrap circuit output. The 
upper trace shows the previous work and the lower shows the 
current work. 

Fig. 2 Captured image by the prototype PWM sensor (1.4V)  
 4. Conclusions 

We have designed and fabricated a CIF (352H×288V pixels) 
PWM sensor in a 0.35-μm CMOS technology with a 1.2-V 
single-power-supply voltage. We also described some design 
considerations and formulated about IR drop in PWM sensor.  
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