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1. Introduction 

Methods of optimizing channel mobility need to be ex-

plored in order to overcome the limitations on the scaling 

down of devices and further improve the speed of comple-

mentary metal-oxide-semiconductor (CMOS) circuits. A 

promising candidate to reach this demand is to exploit the 

strain-induced band-structure modification. It is shown that 

p-type metal-oxide-semiconductor field effect transistors 

(pMOSFETs) with biaxial compressively stress in a SiGe 

layer [1-2] exhibit improved drive current due to the en-

hancement in hole mobility. On the other hand, flicker (1/f) 

noise is one kind of low frequency noise which has been 

the subject of many works during the past years in semi-

conductor devices [3-4]. As a result to the mobility en-

hancement, the SiGe pMOSFET is expected to exhibit an 

improved 1/f noise characteristic [5], which is important in 

analog applications such as mixer and signal generation 

circuits. 

In this work, the 1/f noise mechanism observed in 

strained-SiGe device is presented. Compared to Si control 

devices, strained-SiGe devices exhibit lower 1/f noise level 

due to holes in strained-SiGe devices are mainly confined 

in SiGe channel away from Si/SiO2 interface where many 

defects and traps are located. 

2. Device Fabrications 

Devices were fabricated in a CMOS process based on 

UHVCVD for epitaxial growth of SiGe and Si layers. The 

schematic cross-sectional view of compressively 

strained-SiGe pMOSFET was shown in Fig. 1. The Ge 

content of compressively strained-SiGe layer is 15% and 

30%. For comparison, the Si control devices without SiGe 

film growth are also investigated. 

3. Results and discussion 

Fig. 2 show the hole mobility curve in the 

strained-SiGe pMOSFETs, it was extracted from a 

long-channel device of L = 100 μm and W = 200 μm by a 

split capacitance-voltage (C-V) method. Obviously, The 

SiGe device structures have higher effective hole mobility 

than the Si-control device, and higher Ge content sample 

exhibits larger mobility enhancement. The mobility en-

hancement for strained-SiGe devices with Ge 15% and 

30% are about 24%, 45% under an electric field up to 0.6 

MV/cm, respectively. This is mainly due to holes reside 

primarily in the higher mobility SiGe layer over a large 

gate-voltage range, and higher Ge content sample has high-

er compressive strain, which leads to larger interband split-

ting and greater mobility. 

The normalized drain current noise spectral density 

(SID/ID
2
) versus frequency for strained-SiGe and Si control 

devices are shown in Fig. 3. As experimentally observed, 

strained-SiGe devices has a lower noise level compared to 

Si control, which can be explained by Fig. 4. Due to more 

carriers are confined in SiGe channel in strained-SiGe de-

vices, carriers transport away from Si/SiO2 interface where 

there are many defects and traps at Si/SiO2 interface, thus 

suppressing noise level. Moreover, the extracted γ value 

closely to unity for all devices indicates that 1/f noise is the 

major source for our devices at low frequency regime. On 

the other hand, adequate noise model to describe the noise 

behavior is needed. A typical normalized power spectral 

density SID/ID
2
 of drain current fluctuations and the corres-

ponding (gm/ID)
2 

ration versus drain current is presented in 

Fig. 5. Observed the leveling off at low ID and the paral-

lelism with the square of the transconductance to drain ratio 

was found in all devices, which indicates that the behavior 

of 1/f noise can only describe by the carrier number fluctu-

ations [4]. 

In order to prove further the noise mechanism, the 

number fluctuation model including correlated mobility 

fluctuations takes the following forms [4]: 
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Where α is a Coulomb scattering coefficient. A larger α 

value indicates that there appears to be evidence for corre-

lated mobility fluctuations and instead the noise is domi-

nated by the conventional number fluctuation term. Extrac-

tion of equivalent oxide traps per unit area Nt and Coulomb 

scattering coefficient α, as a function of the Ge content are 

shown in Fig 6. As expected, SiGe device with 30% Ge 

concentration exhibits the lowest α value. This is attributed 

to the fact that the devices have small effective mass, re-

sulting from the SiGe channel under going a stronger biaxi-

al compressive strain. According to the According to theo-

retical calculations [6], the smaller the effective mass is, the 

reduced the scattering. This is the reason that SiGe devices 

with 30% exhibit improved 1/f noise performance. 

4. Conclusions 

   The strained-SiGe pMOSFETs have been demonstrated 

enhance device performances and reduce short channel 

effect. For 1/f noise characteristics, the noise level of 
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Fig. 3 Normalized Drain current noise spectral density  

versus frequency for strained-SiGe and Si control devices. 

Fig. 6 Traps density and scattering parameter as function 

of Ge content for strained-SiGe and Si control devices. 

Fig. 4 The schematic diagram to represent carrier transport 

for strained-SiGe devices. 

Fig. 2 Effective hole mobility for strained-SiGe and Si 

control devices as a function of effective field. 
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strained-SiGe PMOSFETs is lower than Si control ones due 

to carrier confinement in SiGe buried channel. As Ge con-

tent increases, noise behavior changes gradually from car-

rier number fluctuations correlated mobility fluctuations at 

strong inversion region. 
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Fig. 5 Normalized Drain current noise spectral density 

and transconductance to drain current ratio squared versus 

drain current for strained-SiGe and Si control devices. 

Fig. 1 The schematic cross-sectional view of compres-

sively strained-SiGe pMOSFET. 
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