Abstract

V_{th} variations by random dopant fluctuations (RDF) in intrinsic channel SOI MOSFETs with ultra-thin BOX are investigated by 3D device simulation. It is found that, contrary to bulk and doped channel SOI MOSFETs, V_{th} variations in intrinsic channel SOI MOSFETs decrease with increasing V_{th}. The device design guideline for intrinsic channel SOI MOSFETs is also discussed.

1. Introduction

Increasing variability of V_{th} is a critical issue for further device scaling. In current bulk MOSFETs, one of the major sources of V_{th} variability is RDF [1,2]. In particular, bulk MOSFETs with high V_{th} severely suffer from V_{th} variability due to high impurity concentration in channel region. Therefore, a FD SOI MOSFET and a FinFET, using an intrinsic channel to eliminate RDF and controlling V_{th} by gate workfunction engineering, have been proposed. Despite of many substantial advantages in these devices, they have not adopted for mass production yet. One of the reasons is that the process for multiple-workfunction-metal-gate-electrode is very difficult.

On the other hand, it has been found that an intrinsic channel FD SOI structure with ultra-thin BOX and a high impurity concentration substrate is effective not only in reducing RDF but also in controlling V_{th} by changing substrate impurity concentration [3-5] without applying back bias voltage. Therefore, this device is promising for multiple-workfunction-electrode devices applications. However, V_{th} variations in different V_{th} in the intrinsic channel FD SOI have not been cleared yet.

In this paper, we investigate the V_{th} dependence of V_{th} variability in the intrinsic channel FD SOI MOSFETs with ultra-thin BOX. Extremely small V_{th} variations due to RDF compared with bulk and doped SOI is demonstrated and its physical understanding is discussed.

2. Simulations

Fig.1 shows schematics of the intrinsic FD SOI with ultra-thin BOX, bulk MOSFETs, and doped channel SOI assumed in this paper. A midgap metal gate electrode is assumed, L_g and W_g are 40nm, t_{ox} is 1.2 nm, and V_a is 1.0V. In SOI MOSFETs, 5-nm and 10-nm BOX layer are assumed, and SOI thickness is 10 nm. The impurity concentration of substrate (N_{SUB}) is changed in the intrinsic channel SOI, and the channel concentration (N_A) is changed in doped SOI and bulk MOSFETs. By the Monte-Carlo 3D device simulation assuming random dopant distribution, V_{th} of 200 samples is calculated for each condition and the standard deviation of V_{th} (σV_{th}) due to RDF is derived.

3. Results

3.1. Characteristics of intrinsic channel SOI MOSFET:

Fig. 2 shows simulated I_d-V_{th} characteristics of an intrinsic FD SOI MOSFET with thin BOX. No considerable degradation of subthreshold slope (SS) due to short channel effect (SCE) is observed even at very low N_{SUB}. Fig. 3 shows V_{th} as a function of N_{SUB}. V_{th} increases as N_{SUB} increases. However, at high N_{SUB}, V_{th} saturates and increases only very slightly. This saturation, which is clearer at thicker t_{BOX}, leads to smaller σV_{th} as mentioned later.

Fig. 4 shows the depth profile of the potential in long channel SOI MOSFETs. At high N_{SUB}, the potential at the interface between BOX and substrate sticks to high level due to extremely thin depletion layer, and this causes the V_{th} saturation. Figs. 5 and 6 show V_{th} as a function of t_{BOX} at L_g of 40nm and 1um, respectively. V_{th} increases monotonically as BOX becomes thinner in long channel, while V_{th} decreases in short channel only when N_{SUB} is low. This decrease in V_{th} is caused by the fringing field through BOX and substrate induced by drain voltage [6].

3.2. V_{th} variations of intrinsic channel SOI MOSFET:

Fig. 7 shows simulated σV_{th} as a function of N_{SUB}. Data in bulk and doped SOI MOSFETs are also shown. In the bulk and doped SOI MOSFETs, σV_{th} rapidly increases as N_{SUB} increases, which is typical and unavoidable in conventional devices. However, in the intrinsic channel SOI MOSFETs, extremely high RDF immunity is clearly observed. Moreover, σV_{th} decreases as N_{SUB} increases, which is never observed in conventional devices. The increase in σV_{th} at low N_{SUB} is caused by the V_{th} decrease by the fringing field mentioned above.

Fig. 8 shows simulated σV_{th} as a function of V_{th}. It is confirmed that the intrinsic channel SOI MOSFET has much smaller σV_{th} at a given V_{th}, and that σV_{th} decreases as increasing V_{th}. The result indicates this device is very suitable for low power devices with high V_{th}. It is also found that, although a device with thinner t_{OX} (5nm) has larger σV_{th}, it can control V_{th} in a wider range. Fig. 9 shows the cumulative probability plot of V_{th} in the intrinsic channel SOI MOSFET, which shows Gaussian distributions.

Based on these results, we can derive a practical design guideline of intrinsic channel FD SOI MOSFETs with ultra-thin BOX. There exists a tradeoff between σV_{th} and V_{th} control range. By adjusting t_{BOX} and choosing high N_{SUB}, V_{th} can be controlled while maintaining σV_{th} very small.
4. Conclusions

Extremely high RDF immunity and good V_{th} controllability in FD SOI MOSFETs with thin BOX and highly doped substrate was demonstrated. It is confirmed that the device has very small σV_{th} even at high V_{th}, indicating the device is very suitable for a low power device.

Fig.1 Schematic views of (a) intrinsic channel FD SOI with ultra-thin BOX, (b) bulk, and (c) doped channel SOI MOSFETs.

Fig.2 I_d-V_g characteristics with different N_{SUB} in intrinsic channel SOI MOSFET. No considerable degradation of SS is observed.

Fig.3 V_{th} dependence of V_{th} in short channel intrinsic channel SOI MOSFET. At high N_{SUB}, V_{th} saturates.

Fig.4 Simulated potential depth profile. At high N_{SUB}, the potential at interface between BOX and substrate sticks to high level due to extremely thin depletion layer.

Fig.5 t_{BOX} dependence of V_{th} in short channel intrinsic channel SOI MOSFET.

Fig.6 t_{BOX} dependence of V_{th} in long channel intrinsic channel SOI MOSFET.

Fig.7 Simulated σV_{th} as a function of N. In bulk and doped channel SOI, N is equal to N_A. In intrinsic channel SOI, N is equal to N_{SUB}.

Fig.8 Simulated σV_{th} as a function of V_{th}. A high σV_{th} in bulk at low V_{th} is caused by SCE.

Fig.9 Cumulative probability plot of V_{th} in intrinsic channel SOI MOSFETs.

Reference

Acknowledgement

This work is partly supported by MIRAI project from NEDO and by the Grant-in-Aid for Scientific Research from MEXT, Japan.