Channel-Proximate Silicon-Carbon Source/Drain Stressors for Performance Boost in Strained N-Channel Field-Effect Transistors

Shao-Ming Koh, Chee-Mang Ng, Zhi-Yong Zhao, Helen Maynard, Naushad Variam, Todd Henry, Yuri Erokhin, Ganesh Samudra, and Yee-Chia Yeo

1 Dept. of Electrical and Computer Engineering, National University of Singapore (NUS), 117576, Singapore.
2 Chartered Semiconductor Manufacturing, 60 Woodlands Industrial Park D, St 2, 738406, Singapore.
3 Varian Semiconductor, 35 Dory Road, Gloucester, MA 01930, USA.
4 Phone: +65 6516-2298, Fax: +65 6779-1103, Email: yeo@ieee.org

ABSTRACT
We report the demonstration of a novel integration scheme for realizing strained n-FETs with enhanced strain effects by deploying silicon-carbon (Si:C) source/drain (S/D) stressors in close proximity to the channel, i.e. Channel-proximate (CP) Si:C S/D stressors. The Si:C S/D is formed by carbon implant and solid phase epitaxy (SPE). Details of the process technology and integration scheme will be discussed. A high substitutional carbon concentration C\textsubscript{sub} of 1.5% is achieved. N-FETs with Si:C S/D show 8% drive current enhancement over control devices. At a given I\textsubscript{OFF}, I\textsubscript{ON} of n-FETs with CP Si:C S/D is improved by 6% over n-FETs without CP-Si:C S/D and 14% over Si S/D control.

INTRODUCTION
Strained engineering has been a workhorse in IC manufacturing to increase carrier mobility and transistor drive current. Beyond the 32 nm technology generation, further increase in the strain level in the Si channel will be required to enhance device performance. Recently, embedded Silicon-Carbon (c-Si:C) source/drain (S/D) stressors have gained significant attention for n-FET performance enhancement [1]-[7]. Si:C S/D can be formed by C+ implant followed by solid phase epitaxy (SPE) in the S/D region of n-FETs [4],[5]. To further increase the strain effect of Si:C S/D stressors, higher substitutional carbon concentration C\textsubscript{sub} has to be achieved in the S/D regions. However, presence of high C concentration will result in carbon-induced dopant deactivation leading to a high sheet resistance R\textsubscript{s}, which is a potential issue, especially in aggressively scaled transistors where parasitic resistance is important.

In this paper, an advanced Si:C S/D formation technology was developed to form strained n-FETs with channel-proximate Si:C S/D stressors, placed in close proximity to the channel for enhanced strain effects. A high substitutional carbon concentration (C\textsubscript{sub}) of 1.5% was achieved. Significant performance enhancement was observed.

CHANNEL-PROXIMATE Si:C S/D (CP Si:C) INTEGRATION
Key process steps for the two device splits are shown in Fig. 1: n-FET with Si:C formed after spacer, and n-FET with Si:C in close proximity to the channel for enhanced strain effects [called channel-proximate (CP) Si:C S/D]. After definition of active regions, well implant, threshold voltage V\textsubscript{T} adjust implant, and anti-punchthrough implant were performed. For CP Si:C S/D n-FETs, C implantation was performed through a 10 nm sacrificial oxide after poly-Si/SiO\textsubscript{2} gate stack formation. Si:C stressors and S/D extension (SDE) were then formed before spacer formation. For non-proximate CP Si:C S/D n-FETs, implantation of C into the S/D region was performed after spacer formation. For all Si:C devices, C implantation was carried out using cold implant for reduced C\textsubscript{sub} and was used in the deep S/D region for improved R\textsubscript{s} and S/D activation and a 2-step SPE anneal was carried out to form Si:C S/D stressors [6]. A 30 nm thick SiO\textsubscript{2} layer was deposited prior to SPE anneal to minimize possible carbon out-diffusion. An unstrained control n-FET with Si S/D was also fabricated. A 2-step silicidation process was carried out for all devices. Fig. 2 shows a transmission electron microscopy image of an N-FET with CP Si:C S/D. The spacer critical dimension was targeted to be ~25 nm for all devices. Full restoration of the crystalline quality is observed in the TEM image. Formation of high-quality Si:C in the S/D region is required for its application as stressors.

RESULTS AND DISCUSSION
A. Superior C\textsubscript{sub} and Strain Level in CP Si:C S/D n-FETs
Impact of dopants on C\textsubscript{sub} was first investigated. Different amount of P3+ was introduced into C containing samples before SPE anneal (800\degree C 40s followed by 650\degree C 2min) was carried out. High-resolution X-ray diffraction (HRXRD) was used to quantify C\textsubscript{sub}, and revealed that lower C\textsubscript{sub} was achieved in samples where P3+ was introduced (Fig. 3). This is due to the enhanced substitutional-to-interstitial diffusivity of C in presence of P during thermal processing [5].

To investigate C\textsubscript{sub} formed in CP Si:C S/D n-FETs, different SPE conditions were tested. Furnace anneal at 720\degree C 2 hr, RTA at 800\degree C 40s was always followed by furnace anneal. The furnace anneal condition was chosen to match the thermal budget of spacer formation. It was observed that C\textsubscript{sub} values were slightly higher for CP Si:C S/D compared to Si S/D (Fig. 4). Note that there is minimal loss in C\textsubscript{sub} in samples which underwent both RTA and furnace anneal. This annealing condition is similar to the thermal budget experienced during the formation of CP Si:C S/D n-FETs, suggesting that C\textsubscript{sub} achieved in the CP Si:C S/D n-FETs remained relatively stable even after spacer formation.

Fig. 5 shows that high C\textsubscript{sub} can be achieved in regions where the concentration of dopants is low (i.e. regions beneath SDE region) as compared to regions where the concentration of dopants is high (i.e. deep S/D regions). This indicates that CP Si:C S/D may have higher C\textsubscript{sub} as compared to non-CP Si:C S/D. Higher C\textsubscript{sub} and close proximity of the Si:C stressors to the channel is vital for boosting the strain effect.

B. Performance Booster with CP Si:C S/D
We integrated the new Si:C formation process in a n-FET process flow and performed a statistical characterization of device performance. Fig. 6 compares the I\textsubscript{DS}-I\textsubscript{DS} of n-FETs with CP Si:C S/D, Si:C S/D and Si S/D. At an I\textsubscript{OFF} of 300 nA/\mu m, I\textsubscript{ON} enhancement is 6% and 14% for CP Si:C S/D n-FETs over Si:C S/D and Si S/D n-FETs, respectively. I\textsubscript{ON} vs Drain-induced barrier lowering (DIBL) plot (Fig. 7) shows a ~12% enhancement for CP Si:C S/D over control devices at a DIBL of 150 m/V. As DIBL is related to the short channel effect and effective channel length, comparing I\textsubscript{ON} enhancement at the same value of DIBL illustrates the enhancement at almost the same effective channel length. Fig. 8 shows the cumulative probability plots of the junction leakages for all devices. Comparable junction leakages are observed for all devices. A matched pair of CP Si:C S/D and Si S/D n-FETs were examined more closely. Fig. 9 shows the transfer characteristics of the matched pair where both the devices have a DIBL of 140 m/V and SS of 113 m/V/dec, indicating they have the same effective channel length. S/D series resistance for CP Si:C S/D n-FETs are lower than for Si S/D and Si S/C S/D are examined from the asymptote in the R\textsubscript{DS} versus V\textsubscript{DS} curve (Fig. 9 inset). The series resistance of the CP Si:C S/D n-FETs is ~10% lower than that of the Si S/D control due to a lower activation of As3+ in the SDE. Despite a higher series resistance, I\textsubscript{DS}-I\textsubscript{DS} plots for n-FETs with CP Si:C S/D show enhancement in I\textsubscript{DS} over Si:C S/D n-FETs (Fig. 10). I\textsubscript{DS} of strained CP Si:C S/D n-FETs can be further enhanced by integrating it in [010]-oriented devices (Fig. 11). This is attributed to the anisotropic electron population at the \Delta_1 valleys which results in smaller conductive mass and thus higher mobility enhancement.

CONCLUSION
Successful integration of Si:C S/D stressors in close proximity to the channel was found to boost the strain effect. Channel-Proximate Si:C S/D stressors gave 14% I\textsubscript{ON} enhancement for control devices. Comparable junction leakage, SS and DIBL were observed. Further I\textsubscript{ON} enhancement can be achieved by using CP Si:C S/D for [010]-oriented devices.

Acknowledgement. Research Grant from National Research Foundation (NRF-RF2008-09) is acknowledged. S.-M. Koh acknowledges Chartered Semiconductor for a Graduate Scholarship. We acknowledge M. A. Bhuiyan for assistance in device characterization.

REFERENCES
(a) Process Flow

(b) Carbon Implant
Channel- Proximate (CP)

SiC S/D
(formed after spacer)

Si:C S/D (formed after spacer)

SiO2 Lining
SiO2

C containing region

(c) HDD implant and SPE

Si:C S/D

Si:C S/D

Si:C S/D

S/D Implant and RTA

SDE Implant

Spacer formation

Si:C

Silicidation

Fig. 1. (a) Key process steps employed in this work, including (b) carbon (C) to form Si:C S/D in close proximity to the channel, and SPE to form (c) n-FET with Si:C S/D stressors.

Fig. 2. TEM image of the sample implanted with carbon. After SPE, full restoration of the crystalline quality is achieved as seen in the TEM image. \(C_{\text{oa}} \) of 1.5% is achieved for CP Si:C S/D n-FET.

Fig. 3. Increasing amount of P\(^+\) enhanced substitutional-to-interstitial diffusivity of C.

Fig. 4. Minimal loss in substitutional carbon after spacer formation.

Fig. 5. Higher \(C_{\text{oa}} \) can be achieved in CP Si:C S/D n-FETs due to lesser dopant interaction.

Fig. 6. At \(I_{\text{diff}} = 300 \text{nA/um} \), n-FET with CP Si:C S/D has 14% higher \(I_{\text{on}} \) than Si S/D n-FET.

Fig. 7. At DIBL of 0.15 V/V, n-FET with CP Si:C S/D shows enhancement in \(I_{\text{on}} \) of 12% over control.

Fig. 8. Cumulative probability plot showing comparable junction leakages for all devices.

Fig. 9. \(I_{\text{on}} \) vs \(V_{\text{d}} \) curves for CP Si:C n-FETs or Si S/D show comparable DIBL and subthreshold swing. (Inset) Si S/D n-FETs shows lower series resistance than CP Si:C S/D n-FETs.

Fig. 10. Device with channel-proximate Si:C S/D shows enhancement in \(I_{\text{on}} \) over devices with Si:C S/D.

Fig. 11. Highest \(I_{\text{on}} \) enhancement observed for [010]-oriented CP Si:C n-FETs, consistent with the directional dependence of piezoresistance coefficients.