The Tunnel Source n-MOSFET: A Novel Asymmetric Device for Low Power **Applications**

Venkatagirish N.¹, Ahmet Tura¹, Ritesh Jhaveri¹, Hsu-Yu Chang¹ and Jason Woo¹ ¹Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA Phone: +1-(310) 206 3279 E-mail: woo@ee.ucla.edu

1. Introduction

MOSFETs are aggressively scaled, As their performance is severely limited by short channel effects (DIBL and V_{TH} roll-off), off-state and gate leakages, parasitic capacitances and resistances, etc. These, in addition to V_{DD} scaling limitation and high sub-threshold swing (>60mv/dec) give rise to high I_{OFF} and make power dissipation an enormous challenge, especially for low power/low current applications. New device innovations are essential to achieve low I_{OFF} and high g_m with high R_{OUT} for digital and analog applications, respectively. Tunnel FETs (TFETs) [1-2] can potentially achieve sub-60mV/dec subthreshold swing (SS) and operate at lower V_{DD}, since source injection is dictated by band-to-band tunneling instead of diffusion. Most TFETs suffer from ION degradation and high average SS close to V_{TH} . To overcome these problems, we have proposed the Tunnel Source (PNPN) n-MOSFET [3], as shown in Fig. 1. This novel asymmetric device has the potential for steep sub-threshold behavior, improved I_{ON}/I_{OFF} , high R_{OUT} and gain (g_m x R_{OUT}) at low bias currents. It also possesses excellent immunity against short channel effects which improves scalability into sub-50nm regime and makes it an attractive candidate for low power digital and analog operations.

2. Concept of Tunnel Source (PNPN) n-FET

The proposed nFET as shown in Fig. 1 has a p^+ source and the current is controlled by band-to-band tunneling between the source and the channel, which is governed by the Fermi selection rule, the tunneling barrier height (ϕ_{TUN}) and width (W_{TUN}) [3]. The band diagram for the tunnel FET in the OFFstate and the ON-state are shown in Fig. 2 (a) and (b) respectively. To reduce the tunnel junction resistance, a smaller bandgap source material (SiGe) has been proposed previously to lower ϕ_{TUN} [4]. However, it is also necessary to reduce W_{TUN} . In our proposed structure, the thin fully depleted n⁺ layer increases the lateral electric field and therefore reduces W_{TUN}, minimizing the potential drop across the tunneling junction and therefore improving ION. The sub-threshold swing is minimized when the pocket is just fully depleted as shown in band diagram or when the tunneling distance is just equal to the pocket width.

3. Device Performance

Fig. 3 shows the comparison between the I-V characteristics for a Tunnel Source (PNPN) n-MOSFET and corresponding conventional SOI MOSFET with the same structural parameters (L_G =90nm, T_{OX} =25Å, T_{SI} =60nm at the same $I_{OFF} = 10 pA/\mu m$. Pocket width=4nm, Pocket doping= 5×10^{19} cm⁻³). The simulations have been performed with ATLAS device simulator, calibrated with experimental data obtained from silicon tunnel diodes [3]. With a narrow (~4nm) n⁺ region, the PNPN n-MOSFET shows a steep sub-threshold behavior (SS~30mv/dec over 3-4 decades at 300K) with low I_{OFF}. This is highly beneficial for low standby power applications.

Fig. 4 shows the behavior of subthreshold swing vs. V_{GT} . It is seen that for the tunnel FET with pocket width 4nm the swing goes below the diffusion limit of 60mV/dec for a wide range. The n⁺-pocket has to be just fully depleted, which is crucial for beneficial device operation. For a wider pocket with the same doping, the pocket is partially depleted; therefore the device is diffusion limited and behaves like a conventional SOI MOSFET (Fig. 4). The band diagrams shown in Fig. 5 (a) - fully depleted pocket and Fig. 5 (b) - partially depleted pocket, show this clearly. Thus, fully depleted n^+ layer is essential for the device to achieve steep sub-threshold behavior and high I_{ON}.

Excellent robustness to SCEs provided by the PNPN n-MOSFET can be seen in Fig. 6 where the DIBL and V_T roll-off are reduced as the channel length decreases. This is due to negligible source-to-channel coupling and reduced influence of drain bias on the source tunneling junction. This is particularly favorable for low standby power where the $I_{\text{ON}}/I_{\text{OFF}}$ ratio as well as low I_{OFF} is maintained with scaling to sub-50nm gate lengths

The tunneling injection mechanism, negligible DIBL and improved resistance to SCEs of the PNPN n-MOSFET have favorable implications for low operating power (low I_{BIAS}) analog applications as well. Fig. 7 shows that the transconductance (gm) of the Tunnel Source n-MOSFET for a just-fully depleted pocket width of 4nm is higher as compared to the conventional SOI device, at low I_{BIAS} ($V_D = 0.8V$), due to the tunneling injection mechanism at the source. (gmSAT is still lower than the conventional SOI).

Fig. 8 shows that the PNPN n-MOSFET exhibits an improvement in R_{OUT} over the conventional SOI for the given channel length. This can be attributed again to reduced drain coupling (DIBL) and resistance to SCEs. When channel length decreases the R_{OUT} is governed by DIBL, rather than channel length modulation. As a result, the intrinsic gain (gm x Rout) of the PNPN n-MOSFET is also higher than the conventional device, especially at low bias currents, as shown in Fig. 9 4. Conclusions

The novel Tunnel Source (PNPN) n-MOSFET is highly promising for stand-by power reduction as it can decrease the subthreshold swing and I_{OFF} beyond the limits for conventional devices. It also shows excellent short channel immunity, significantly higher gm, R_{OUT} and intrinsic gain in addition to good high frequency characteristics, especially at low I_{BIAS}.

Acknowledgements

The authors would like to acknowledge and thank DARPA for providing funding for the project.

References

- [1] T. Krishnamohan, et al, p. 947 (2008).
- [2] F. Mayer et al, *IEDM*, p. 163 (2008)
- [3] Venkatagirish N. et al, TED Vol. 55, No. 4, p. 1013 (2008)
- [4] K. K. Bhuwalka, et al, TED, Vol. 52, No. 7, p. 1541 (2005)

Fig. 1 Device structure of the tunnel source (PNPN) n-FET

Fig. 2 Band Diagram of the tunnel n-FET in the (a) OFF state and (b) ON state

Fig. 3 Comparison of I_D - V_G curves for the PNPN tunnel FET and Conventional SOI MOSFET. The tunnel FET shows <60mV/dec subthreshold swing

Fig. 4 SS vs V_{GT} for the tunnel n-FET with 2 widths and conv. SOI n-FET. When W = 4nm (fully depleted) the SS goes below 60mV/dec

Fig. 5 Band diagram when the pocket is (a) fully depleted and (b) partially depleted

Fig. 6 Scaling of the tunnel n-FET with respect to V_{Th} roll off and DIBL

Fig. 7 Transconductance of the PNPN tunnel FET in comparison to conv. SOI n-FET. The tunnel n-FET has higher transconductance due to tunneling injection mechanism

Fig. 8 Comparison of output resistance of the PNPN tunnel FET and conv. SOI n-FET

Fig. 9 Comparison of the intrinsic gain of the PNPN tunnel FET and the conv. SOI n-FET. The tunnel n-FET has higher gain performance.