A new definition of threshold voltage by constant slope for analysis of statistical variations of MOSFETs

[†]Takuji Tanaka, Hiroshi Suzuki and Osamu Yamasaki Fujitsu Microelectronics Ltd. 50 Fuchigami, Akiruno, Tokyo 197-0833 Japan Tel: +81-42-532-1468, Fax: +81-42-532-2422, E-mail: [†]tanaka.takuji@jp.fujitsu.com

Abstract We have proposed a new definition of threshold voltage by constant slope $(V_{\rm th\,sl})$ for analysis of statistical variations of MOSFETs. We have analyzed characteristic of $V_{\rm th\,sl}$: value, statistical variation, correlation comparing that of conventional $V_{\rm th}$ by constant current and $V_{\rm th}$ by extrapolation. Extraction of $V_{\rm th\,sl}$ is simple, easy, fast and robust and its errors are well suppressed in measurement. $V_{\rm th\,sl}$ is found to be one of a best parameter for analysis of statistical variations.

1 Introduction Recently, statistical variation of MOS-FETs in electric characteristics is one of most serious issue in scaled VLSIs. The threshold voltage $(V_{\rm th})$ is one important parameter to analyze MOSFET electric characteristics and many kind of definition of $V_{\rm th}$ has been proposed and commonly used. In measurement of statistical variation, a $V_{\rm th}$ whose extraction is easy, fast and robust is required. However, several commonly-used $V_{\rm th}$'s have some shortage on this purpose. $V_{\rm th}$ defined by constant current $(V_{\rm th \, c})$ is difficult to define effective gate length L and width W and uncertain L and W lead to some errors. $V_{\rm th}$ defined by extrapolation $(V_{\rm th \, x \, max})$ takes long time in extraction because it requires measurement of I_d - V_g with wide range and small V_g step and an extraction procedure of maximum of differential is often affected by noise and parasitic resistance.

In this paper, we propose a new definition of threshold voltage by constant slope $(V_{\rm th\,sl})$ for analysis of statistical variations. We discuss characteristic of $V_{\rm th\,sl}$: value, statistical variation, correlation comparing that of $V_{\rm th}$ by constant current and $V_{\rm th}$ by extrapolation and show the validity of $V_{\rm th\,sl}$ as a parameter for analysis of statistical variations.

2 Basis of threshold voltage by constant slope $V_{\text{th sl}}$ is defined by V_g that gives a constant slope S_{th} (Fig. 1(a)), where $S \equiv \partial V_g / \partial (\log_{10} I_{ds})$ is as same as commonly used "subthreshold slope" at the subthreshold region. If I_{ds} follows a model equation $I_{ds} = (\mu_{\text{eff}} C_{\text{ox}} W/L) \times f(V_g, V_d)$ [1], $1/S = \partial \log I_{ds} / \partial V_g = \partial \log f(V_g, V_d) / \partial V_g$ is independent of C_{ox} , L, W and depend only on the shape of the curve $f(V_g, V_d)$. In measurement, $S-V_g$ was found to be independent of L (Fig. 1(b)). Therefore, $V_{\text{th sl}}$ does not affected by uncertainty of L and W. Ref. 2 proposed V_{th} defined by V_g which gives minimum of S from the similar motivation. However, its extraction will not be robust because second order differential of $\log I_{ds}$ is required and due to leak currents at subthreshold region.

In Tab. 1, $V_{\rm th}$'s discussed in this paper are listed. $V_{\rm th\,c\,W}$ and $V_{\rm th\,c\,IW}$ are conventional $V_{\rm th}$ defined by constant current. $V_{\rm th\,g_{m\,max}}$, $V_{\rm th\,\beta_{max}}$ is given by intercept of $I_{ds}-V_g$, $\sqrt{I_{ds}}-V_g$, $d_{ds}-V_g$, $d_{ds}/\partial V_g$, at $I_{ds} = 0$ extrapolating from maximum of $\partial I_{ds}/\partial V_g$, $\partial \sqrt{I_{ds}}/\partial V_g$, respectively. In Fig. 2(a), we compare $V_{\rm th\,c}$ and $V_{\rm th\,sl}$ in I_d-V_g , $S-V_g$ plots. We show some worst case of measured variation of I_d-V_g in a wafer of an experimental lot in Fig. 2(b). The hump at subthreshold region is large and cause larger variation of $V_{\rm th\,c}$ in constrast to I_d-V_g at the strong inversion region. However, the variation of $V_{\rm th\,c}$ is not strongly related to that of the function of circuit because subthreshold region is not so important for the function of circuit.

Figure 3 shows measured I_{ds} which gives constant slope

 $S_{\rm th} = 0.2, 0.4$ V/decade normalized by L/W in MOSFETs with various size of L as a function of L at low V_d . $S_{\rm th}$ is roughly corresponds to $I_{\rm th \, LW}$ from 5×10^{-7} A to 5×10^{-6} A. It shows the V_g region for $V_{\rm th \, sl}$ extraction is much larger than subthreshold and than commonly-used $I_{\rm th}$ for $V_{\rm th \, c}$ and is much smaller than that for $V_{\rm th \, x \, max}$ extraction. It makes advantage of easier, faster and more robust measurement because limited V_q region is required in $V_{\rm th \, sl}$ extraction.

3 Measurement of statistical variation We prepared test patterns specialized to measure layout dependence of I-V. Those patterns are set in the 16×16 transistor matrix per a chip as similar to Ref. 3. We fabricated a wafer by 65 nm technology and measured $I_{ds}-V_d$ and $I_{ds}-V_g$ characteristic of typically 5120 transistors per one monitor pattern.

3.1 Comparison of $V_{\rm th}$'s Figures 4 and 5 show correlation plot of $V_{\rm th sl}(0.4)$ versus $V_{\rm th g_{m max}}$ at a linear region and versus $V_{\rm th \beta_{max}}$ at a saturation region, respectively. At most case, $V_{\rm th sl}$ and $V_{\rm th x max}$ are on the line of $V_{\rm th sl} - V_{\rm th g_{m max}} =$ $0.21 \sim 0.22$ at linear region and $V_{\rm th sl} - V_{\rm th \beta_{max}} = 0.33 \sim$ 0.34 at saturation region, respectively. It shows $V_{\rm th sl}$ and $V_{\rm th x max}$ are strongly correlated and the behavior of variation is very similar. Correlation plot of various threshold voltage $V_{\rm th sl}$, $V_{\rm th c W}$ and $V_{\rm th c LW}$ versus $V_{\rm th x max}$ (Fig. 6) shows that correlation of $V_{\rm th sl}$ and $V_{\rm th c}$ is weak and some different phenomena are affected.

3.2 Distribution of $V_{\rm th \, sl}$ Figure 7 shows cumulative probability of various threshold voltages in sets of the MOSFETs with size of L = 1000 nm, W = 1000 nm and L = 60 nm, W = 140 nm. It shows the distribution of $V_{\rm th}$ is almost the same among different definitions. Figure 8 shows standard deviation σV_{th} at $V_d = V_{dd}$ in each device size normalized by \sqrt{LW} as a function of \sqrt{LW} , where various threshold voltages $V_{\rm th\,c\,W}$ at $I_{\rm th\,W} = 1 \times 10^{-7}$ A/ μ m, $V_{\rm th\,c\,LW}$ at $I_{\text{th LW}} = 1 \times 10^{-7} \text{ A}$, $V_{\text{th } \beta_{\text{max}}}$, and $V_{\text{th sl}}(0.4)$ are compared. It shows the dependence of $\sigma V_{\rm th}$ is almost the same between $V_{\mathrm{th}\,\beta_{\mathrm{max}}}$ and $V_{\mathrm{th}\,\mathrm{sl}}$ and σV_{th} of $V_{\mathrm{th}\,\beta_{\mathrm{max}}}$ and $V_{\mathrm{th}\,\mathrm{sl}}$ is smaller than that of $V_{\text{th}\,\text{c}\,\text{W}}$ and $V_{\text{th}\,\text{c}\,\text{LW}}$. It is because constant current $V_{\rm th}$'s $V_{\rm th\,c\,W}$ and $V_{\rm th\,c\,LW}$ is affected and $V_{\rm th\,sl}$ and $V_{\rm th\,\beta_{max}}$ is not affected by leak currents (junction leak, GIDL, and source/drain leak from unselected DUTs) and by hump at subthreshold.

4 Conclusion We have proposed a new definition of threshold voltage by constant slope ($V_{\rm th\,sl}$). Extraction of $V_{\rm th\,sl}$ at slope $S_{\rm th} = 0.4$ V/decade was found to be simple, easy, fast and robust and its errors are well suppressed in measurement. $V_{\rm th\,sl}$ is one of a best parameter for analysis of statistical variations.

References

- Y. Chang, M.-C. Jeng, Z. Liu, J. Huang, M. Chan, K. Chen, P. K. Ko and C. Hu, IEEE Trans. on Elec. Dev. 44 pp.277–287, 1997.
- Kazuo Aoyama, Specification of Japanese Patent Application Unexamined Publication No. Hei 6-252395. Disclosed in 1994. (in Japanese).
- [3] S. Ohkawa, M. Aoki and H. Masuda, Int. Conf. Microelec. Test Struct. pp.3–75, 2003.

Table 1: List of threshold voltages by several definitions. L and H in the V_d column denotes it is valid at low V_d (linear region) and high V_d (saturation region), respectively.

	parameter	V_d	definition
	$V_{\rm thsl}(S_{\rm th})$	LH	V_g at $S \equiv \partial V_g / \partial (\log_{10} I_{ds}) = S_{\text{th}}$ (constant slope)
ļ	$V_{\mathrm{thcW}}(I_{\mathrm{thW}})$	LH	V_g at $I_{ds}/W = I_{\rm th W}$ (constant current)
	$V_{\rm thcLW}(I_{\rm thLW})$	LH	V_g at $I_{ds}L/W = I_{\text{th LW}}$ (constant current)
	$V_{\text{th } g_{m \max}}$	L	extrapolation of $I_{ds}-V_g$ from maximum of $\partial I_{ds}/\partial V_g$
	$V_{\text{th }\beta}$	Н	extrapolation of $\sqrt{I_{ds}} - V_a$ from maximum of $\partial \sqrt{I_{ds}} / \partial V_a$

Figure 1: Measured gate capacitance C_{inv} , I_d/W , and slope $S \equiv \partial V_g/\partial (\log_{10} I_{ds})$ as a function of V_g . (a) Definition of threshold voltage by constant slope $V_{\text{th sl}}$ and (b) L dependency.

Figure 2: (a) Comparison of threshold voltage by constant current $V_{\text{th c W}}$, $V_{\text{th c LW}}$ and constant slope $V_{\text{th sl}}$. (b) a worst case of measured $I_{ds}-V_g$ variation. $V_{\text{th c W}}$ and $V_{\text{th c LW}}$ may affect hump of I_d-V_g at the subthreshold region.

Figure 3: Measured I_{ds} which gives constant slope $S_{\rm th} = 0.2, 0.4$ V/decade normalized by L/W in MOSFETs with various size of L as a function of L.

Figure 4: Correlation plot of $V_{\rm th\,sl}$ at $S_{\rm th}=0.4$ V/decade versus $V_{\rm th\,g_{m\,max}}$ at linear region.

Figure 5: Correlation plot of $V_{\rm th\,sl}$ at $S_{\rm th}=0.4$ V/decade versus $V_{\rm th\,\beta_{max}}$ at saturation region.

Figure 6: Correlation plot of various threshold voltage $V_{\text{th sl}}$, $V_{\text{th c}W}$ and $V_{\text{th c}LW}$ versus (a) $V_{\text{th g}_{m \max}}$ at linear region and (b) $V_{\text{th }\beta_{\max}}$ at saturation region.

(b) where T: Cumulative probability of various threshold voltages. (a) L = 1000 nm, W = 1000 nm, (b) L = 60 nm, W = 120 nm.

Figure 8: Standard deviation $\sigma V_{\rm th}$ in each device size normalized by \sqrt{LW} as a function of \sqrt{LW} comparing among various threshold voltages $V_{\rm th \, c \, W}$, $V_{\rm th \, c \, LW}$, $V_{\rm th \, \beta_{max}}$, and $V_{\rm th \, sl}$.