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Introduction 

Complementary metal-oxide-semiconductor feld-effect transistor 
(CMOSFET) has been aggressively scaled down to nanometer region.  
One of the principal technologies for scalling down the CMOSFET is 
ultra-shallow junction (USJ), which requires formation of very shallow, 
abrupt dopant profiles with high activation.  Recently, it was found 
that co-implantation of carbon (C) in a range comparable with boron 
(B) concentrations could suppress B diffusion, resulting in a box-like B 
profile shape[1-4].  On the other hand, the reducing of B activation in 
the presence of C has been reported[2,4].  Those phenomena were 
attributable to the formation of C-interstitial clusters[5].  In contrast, 
the improvement of B activation by using C co-implantation has also 
been presented[3].  The influence of C on activation properities in 
wide C and B concentration range has not been sufficiently 
investigated. 

In this work, we investigated the diffusion and the activation 
characteristics of B in the C-doped Si (Si1-y:Cy) epitaxial film in wide C 
and B concentration ranges by electrical and chemical analyses. 

Experimental Procedure 
Blanket Si1-y:Cy (y : 0 - 0.01) with a thickness of 100 nm was grown 

epitaxially on p-type Si (100) substrate with resistivity of 1-2 ohm-cm 
using a residual pressure chemical vapor deposition below 600 ˚C.  To 
study the diffusion and the activation of B in the Si1-y:Cy film, B ions at 
energy of 2.5keV were implanted with dose ranging from 5 x 1014 cm-2 
to 3 x 1015 cm-2 into Si1-y:Cy layer.  Then, conventional spike 
annealing was performed at 1050 ˚C for 1.5 s residence time with 
preheated temperature in N2 below 650 ˚C. 

The B profiles in Si1-y:Cy were measured by secondary-ion mass 
spectroscopy (SIMS) with a primary ion of Cs+.  Electrical properties 
in B-implanted Si1-y:Cy were evaluated by a liner four-point probe 
method and Hall measurement with the van der Pauw method. 

Results and Discussion 
Depth profiles of B in Si1-y:Cy layer after spike annealing at 1050 ˚C 

are shown in Fig. 1.  The reduction of the B diffusion by C showed 
strong C concentration dependence.  The B diffusion was reduced with 
increasing C concentration in Si.  This reduction in B diffusion is 
mainly caused by a chemical species effect whereby C interacts with Si 
interstitials.  Moreover, in the case of 5 x 1014 cm-2 and 1 x 1015 cm-2 B 
implant, B peak concentration increased with increasing C concentration, 
as indicated in the insets in Figs. 1(a) and (b).  It was supposed that an 
intrinsic B diffusion was suppressed by C resulting in the increase of B 
peak concentration.  In contrast, in the case of 3 x 1015 cm-2 B implant, 
the increase of B peak concentration was not confirmed owing to the 
incorporation of C, as shown in the inset in Fig. 1(c).  In the case of 
heavy B implant dose such as 3 x 1015 cm-2, the stable B-containing 
clusters and precipitates are easily created at high B concentration 
region after high-temperature spike annealing at 1050 ˚C.   Thus, it is 
thought that the reduction of intrinsic B diffusion and the increase of B 
peak concentration are not caused by C incorporation into Si. 

The change of B profile caused by C has a great effect on the 
electrical conduction characteristic of B activation layer in Si1-y:Cy.  
Figure 2 shows the sheet carrier concentration (Ns) of B activation layer 
in Si1-y:Cy as a function of C concentration.  The dependence of C 
concentration and B dose on Ns of B activation layer in Si1-y:Cy showed 
a characteristic tendency.  Once Ns had decreased with increasing C 
concentration, it then increased with increasing C concentration.  In 
the case of light B implant dose such as 5 x 1014 cm-2 and 1 x 1015 cm-2, 
Ns of B activation layer in Si1-y:Cy decreased by about 0.2 at.% C 
incorporation.  The suppression of B diffusion in Si1-y:Cy, as indicated 
in Figs. 1(a) and (b), was thought to be the main cause of decreasing Ns 
by about 0.2 at.% C incorporation.  It was considered that the increase 
of Ns above about 0.2 at.% C incorporation greatly affected the increase 
of B peak concentration by C incorporation, as indicated in the insets in 
Figs. 1(a) and (b). 

  Whereas, in the case of heavy B implant dose such as 3 x 1015 cm-2, 
Ns of B activation layer in Si1-y:Cy was decreased by about 0.6 at.% C 
incorporation.  Approximately 24 % of Ns decreasing was observed 
compared with B activation layer in Si.  Since B peak concentration 
was not increased by C incorporation as shown in the inset in Fig. 1(c), 
the suppression of B diffusion in Si1-y:Cy, as indicated in Fig. 1(c), was 
thought to be the main cause of decreasing Ns. 
  The solubility limit and the activation ratio at 1050 ˚C spike 
annealing were estimated from the results of SIMS and Hall 
measurement, as illustrated in Fig. 3.  Figures 4 and 5 show the 
estimated solid solubility and the ratio of activation ratio of B activation 
layer in Si1-y:Cy to that in Si at 1050 ˚C spike annealing as a function of 
C concentration.  In the case of light B implant dose such as 5 x 1014 
cm-2 and 1 x 1015 cm-2, it was found that the solubility limit and the 
activation ratio were increased dramatically by C incorporation.  This 
might be attributable to interaction with Si interstitials and suppression 
of the boron Si-interstitials clustering by C incorporation.  In contrast, 
in the case of heavy B implant dose such as 3 x 1015 cm-2, the solubility 
limit and the activation ratio were decreased slightly by C incorporation.  
When the stable B-containing clusters and precipitates were created at 
high B concentration region after high-temperature spike annealing at 
1050 ˚C, the effect of C incorporation on activation ratio was considered 
to be small. 
  Figure 6 shows the mobility of B activation layer in Si1-y:Cy as a 
function of C concentration.  With the increase of C concentration, the 
mobility decreased, as shown in Fig. 6.  The main factor in decrease of 
mobility was thought to be lattice strain attributable to the taking of C in 
lattice substitution of Si crystal.  At the same time, when B implant 
dose was heavy, the decrease of the mobility with increasing C 
concentration was small compared with light B implant dose.  This 
was thought to be because the effect of the impurity scattering on 
mobility was dominant, and the effects of C were difficult to discern. 

Finally, the dependence of C concentration and B implant dose on the 
sheet resistance of B activation layer in Si1-y:Cy showed a characteristic 
tendency based on the above-mentioned results, as indicated in Fig. 7.  
In the case of heavy B implant dose such as 3 x 1015 cm-2,  the sheet 
resistance increased proportionally with increasing C concentration by 
0.6 at.%.  More than 0.6 at.% C had a tendency to saturate the sheet 
resistance.  On the other hand, once the sheet resistance had increased 
with increasing C concentration, it then decreased with increasing C 
concentration in the case of light B implant dose such as 5 x 1014cm-2 
and 1 x 1015cm-2.  

Conclusions 
In the experiment on wide C and B concentration range, it was 

clarified for the first time that B activation ratio in Si was increased or 
decreased depending on C incorporation concentration.  The activation 
ratio of B activation layer was increased dramatically by C 
incorporation in the case of light B implant such as the range of 8 x 1019 
to 3 x 1020 cm-3 concentration.  This might be attributable to interaction 
with Si interstitials and suppression of the boron Si-interstitials 
clustering by C incorporation.  In contrast, in the case of heavy B 
implant such as 1 x 1021 cm-3 concentration, the activation ratio was 
decreased slightly by C incorporation.  When the stable B-containing 
clusters and precipitates were created at high B concentration region, the 
effect of C incorporation on activation ratio was considered to be small. 
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Fig.1 B diffusion dependence on C concentration in Si1-y:Cy films. (a) 5 x 1014 cm-2 B+ implant, (b) 1 x 1015 cm-2 B+ implant, (c) 3 x 
1015 cm-2 implant. 

(a) (b) 

Fig.2 Sheet carrier concentration (Ns) of B 
activation layer in Si1-y:Cy as a function of C 
concentration by the Hall measurement. 

Fig.6 Mobility of B activation layer in 
Si1-y:Cy as a function of C concentration 
by the Hall measurement. 

Fig.4 Estimated solid solubility at 1050 ˚C 
spike annealing of B activation layer in Si1-y:Cy
as a function of C concentration from SIMS 
and Hall measurement. 
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Fig.3 Schematic of the estimation for 
solubility limit and activation ratio 
from SIMS and Hall measurement. 

Fig.5 Estimated ratio of activation ratio of B 
activation layer in Si1-y:Cy to that in Si at 1050 ˚C 
spike annealing as a function of C concentration 
from SIMS and Hall measurement. 
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Fig.7 Sheet resistance of B activation 
layer in Si1-y:Cy as a function of C 
concentration. 
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