WRGB LOFIC CMOS Image Sensor with Color-Independent Exposure and Widely-Spectral High Sensitivity

Shun Kawada, Shin Sakai, Yoshiaki Tashiro and Shigetoshi Sugawa

Graduate School of Engineering, Tohoku University
6-6-11, Aza-Aoba, Aramaki, Aoba-ku, Miyagi 980-8579, Japan
Phone: +81-22-795-4833 E-mail: kawada@fff.niche.tohoku.ac.jp

1. Introduction

Image sensors with wide dynamic range, good color reproducibility and high SNR are required in security, automotive, chemical and biological application field. Several recent papers have described a wide dynamic range CMOS image sensors with lateral overflow integration capacitor (LOFIC) pixels which have solved the trade-off between full well capacity (FWC) and sensitivity[1, 2, 3]. Also, high sensitivity CMOS image sensors with WRGB color filter[4] and without infrared cut (IR-Cut) filter[5] have been reported. The image sensor without IR-Cut filter can obtain high luminance signals but cannot have good color reproducibility.

In this paper, we have described a WRGB LOFIC CMOS image sensor featuring almost the same saturation exposure with wide dynamic range, good color reproducibility in RGB pixels and high sensitivity luminance in W pixels from visible to Near-IR spectral region. The LOFIC CMOS image sensor with a 1/3.3-inch optical format, 1280×480 pixels, 4.2-μm effective pixel pitch with 45° direction was designed and fabricated through 0.18-μm 2-Poly 3-Metal CMOS technology with buried pinned photodiode (PD) process. The image sensor has achieved about 108-μV/e⁻ high conversion gain and about 102-dB dynamic range performance in one exposure.

2. General Instructions

Fig. 1 and 2 shows the schematic diagram of pixel equivalent circuit and the schematic diagram of the pixel layout of the image sensor, respectively. A LOFIC has been placed in a pixel, which integrates overflow photoelectrons from PD and floating diffusion (FD) under strong light intensity. The color filters and on-chip micro-lens are densely and uniformly placed along the direction at an angle of 45° on the PD in a rectangle pixel. Fig.3 shows the electron potential diagrams of WRGB pixels. The capacitance ratio of LOFICs have been set into W:R:G:B = 3:1:2:1 in order to achieve almost the same saturation exposure of all pixel color. Fig. 4 is a micrograph of the chip and the close-up image of color filter arrays. Fig. 5 shows the measured spectral sensitivity response of the image sensor. The good color selectivity of the R, G and B pixels with IR-Cut filter, as well as the high sensitivity of the W pixel with IR-Cut filter are obtained. In addition, W pixel without IR-Cut filter indicates widely-spectral high luminance sensitivity performance from visible to Near-IR region.

![Fig. 1 Schematic diagram of pixel circuit.](image1)

![Fig. 2 Schematic diagram of pixel layout and color filters.](image2)

![Fig. 3 Electron potential of WRGB pixels.](image3)

![Fig. 4 Chip micrograph.](image4)

![Fig. 5 Spectral sensitivity responses. The W, R, G and B responses have been measured with IR-Cut filter (IRC-65L).](image5)
Fig. 6 shows the photo-electric conversion characteristics under a daylight source (5100K) and an A light source (2856K) respectively. Fig. 7 shows the relative sensitivity of WRGB and W without IR-Cut filter pixels under two light sources extracted from Fig. 6. The W pixels, especially the W pixels without IR-Cut under A light source have four times or more high sensitivity compared with R, G and B pixels. Fig. 8 shows the saturation exposure of WRGB and W without IR-Cut filter pixels extracted from Fig. 6. The saturation exposure is about a digit higher than a conventional CMOS image sensor.

TABLE I Specification and performance

<table>
<thead>
<tr>
<th>Process technology</th>
<th>0.18-µm 2P3M CMOS with pinned PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>3.0-µm × 6.0-µm²</td>
</tr>
<tr>
<td>Effective pixel pitch</td>
<td>4.2-µm (45° direction)</td>
</tr>
<tr>
<td>Number of effective pixels</td>
<td>1280 × 480²</td>
</tr>
<tr>
<td>Conversion gain</td>
<td>108-µV/e</td>
</tr>
<tr>
<td>Noise Floor</td>
<td>2.43-e</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>102-dB (W pixel)</td>
</tr>
</tbody>
</table>

And the ratio of the highest to the lowest saturation exposure between the two light sources has decreased from 5.5 to 1.7. In Fig. 9 (a), the high quality color image from high to low light intensity is obtained in one exposure. In Fig. 9 (b), a wide waveband image from visible to Near-IR is obtained by W pixels without IR-Cut filter. The WRGB LOFIC CMOS image sensor has achieved 2.43-e⁻ dark temporal noise, 3.2 × 10⁵ e⁻ FWC of W pixels and about 102-dB dynamic range.

3. Conclusions

A WRGB LOFIC CMOS image sensor in which the saturation exposures were designed almost the same, including W pixels with wide-band high sensitivity from visible to near infrared, has been developed. As a result, wide dynamic range, good color reproducibility in RGB pixels and high sensitivity luminance in W pixels have been achieved simultaneously.

References