Fe/Ge Catalyzed Carbon Nanotube Growth on HfO$_2$ for Nano-Sensor Applications

T. Uchino1, G. N. Ayre2, D. C. Smith2, J. L. Hutchison3, C. H. de Groot1, and P. Ashburn1

1School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BI, UK
2School of Physics and Astronomy, University of Southampton, Southampton SO17 1BI, UK
3Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK

1. Introduction
Carbon nanotubes (CNTs) are gaining much attention for device application, especially bio-sensing [1]. The main advantage of CNTs for this application is a very high sensitivity due to the large surface to volume ratio of a CNT. The use of a high-k dielectric as a gate insulator for a CNTFET is valid because it delivers improved performance due to an increased I_{on}/I_{off} ratio. CNTFETs with a HfO$_2$ gate dielectric have also recently been researched for application in high-speed non-volatile memory [2]. CNTs can be introduced onto HfO$_2$ using dispersion techniques, but CNT growth by CVD would be more compatible with mainstream Si technology. However, CVD growth of CNTs on HfO$_2$ appears to be very difficult and to our knowledge no work has been reported so far.

In this paper, a CNT growth process on HfO$_2$ is reported and this growth process is used to produce back gate CNTFETs with Al source/drain (S/D) contacts. The novel growth process uses a combination of Ge nanoparticles and ferric nitrate dispersion to achieve a dramatic increase in CNT yield compared with the use of ferric nitrate dispersion alone. Electrical measurements on completed CNTFETs show p-FET behavior, an excellent I_{on}/I_{off} ratio of 10^5, and a steep sub-threshold slope of 130 mV/dec.

![SEM images after CNT growth on HfO$_2$ substrates](image)

Fig. 1. SEM images after CNT growth on HfO$_2$ substrates using (a) Fe nanoparticles only and (b) a combination of Ge and Fe nanoparticles. CNT area densities are 0.15 and 6.2 µm length/µm2 respectively.

2. Experimental
A p'$+$ Si substrate (0.005 Ω·cm) was employed as a back gate and a passivating SiO$_2$ layer was thermally grown, followed by the deposition of a HfO$_2$ layer by atomic-layer deposition. A 30nm SiO$_2$ layer was then deposited by PECVD on top of the HfO$_2$ and densified at 950 °C. The SiO$_2$ layer was then implanted with 5×10^{15} cm$^{-2}$, 20 keV Ge and annealed in N$_2$ at 600 °C for 40 min to create Ge nanoparticles. The SiO$_2$ layer was then removed using a HF vapor etch to expose the Ge nanoparticles on top of the HfO$_2$ layer. Then the HfO$_2$ substrate was dipped in ferric nitrate solution for 1 min and rinsed with hexane. The CNT growth was performed using CVD in a hot-wall reactor at atmospheric pressure. CNTs were grown at 850 °C for 20 min using a mixture of methane (1000 sccm) and H$_2$ (300 sccm) immediately after a pre-anneal in H$_2$ (1000 sccm) at 900 °C. For comparison, CNT growth on HfO$_2$ without Ge nanoparticles was also carried out.

Back gate CNTFETs were fabricated with Al S/D contacts. Al was deposited by sputtering and the S/D electrodes were formed using direct write laser lithography and lift-off. The use of Al instead of the more common Pd can both reduce the cost and improve the yield, as Pd has poor adhesion to HfO$_2$. The gap between the S/D electrodes was 2.0 µm and the width was 5.0 µm. After Al patterning, the devices were annealed in H$_2$ at 400 °C for 30 min.

3. Results and Discussion
The Ge nanoparticles were evaluated by means of atomic force microscopy. These results showed a high density of particles (460 ± 30 particles/µm2), with particle

![I-V characteristics of an Al contacted CNTFET](image)

Fig. 2. I-V characteristics of an Al contacted CNTFET with channel length $L_g = 2.0$ µm after H$_2$ anneal. Sub-threshold characteristics for $V_d = -0.1$ and -1.0 V and output characteristics for $V_g = -1.0$, -1.5, -2.0, -2.5 V.
We have developed a novel CNT growth process on HfO₂ using a combination of Ge nanoparticles and ferric nitrate dispersion. The synthesized CNTs were successfully applied to fabricate back gate CNTFETs with Al S/D contacts for application in nano-sensors. The CNTFETs have an excellent on/off current ratio of 10^3 and a steep sub-threshold slope of 130 mV/dec. The sub-threshold characteristics including threshold voltage shift after exposure in air indicate that the CNTFETs are suitable for application as nano-sensors.

Acknowledgements

The authors acknowledge EPSRC for supporting this work.

References