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1. Introduction 
Recently, nanoscale MOSFETs have been extensively 
investigated, and channel length is around the mean free path 
of electron. Consequently, drain current is mainly due to 
electron of ballisitic mode. For control of short channel 
effects, gate-all-around(GAA)-MOSFET allows a good 
control of short channel effects in undoped channel. For 
calculating characteristics of IDS−VGS, previous works defined 
a number of equations or fitting parameters, and these 
parameters depended on device scale [3,4]. In this paper, we 
derive an analytical compact model of drain current in 
cylindrical GAA-MOSFET. This model represents in whole 
current region without introducing the threshold voltage, 
using the method applied to double-gate(DG)-MOSFET in 
[1]. With only one equation to be solved numerically, and 
only one fitting parameter(flat-band voltage), the surface 
potential, potential distribution in the channel, energy level of 
electron, electron density in the channel, and drain current at 
any gate voltage can be calculated self-consistently. 
  
2. Compact Model 
Assuming the circlular cross section, the model structure in 
this study is cylindrical GAA-MOSFET having intrinsic Si 
channel and gate oxide with SiO2 equivalent thickness tox 
(Fig. 1 (a) and (b)). In Fig. 1 (c), Ec,max is maximum energy 
level of conduction band energy minimum distribution at zmax. 
In the ballistic transport, drain current IDS is determined by 
the electron velocity and the number of electrons having 
energies higher than Ec,max. Figure 1 (d) shows potential 
energy distribution in the quantum well at zmax. In this plane, 
electrostatic potential distribution is approximately given by  
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where ws = Es/(−e) is the surface potential, ∆V is a parameter 
determining potential shape, and a is radius of circular cross 
section. The schrödinger equation in such a potential energy 
distribution includes the following matrix elements: 
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where R0
m,n is a wave function in the cylindrical 2D quantum 

well. In Fig. 2 (a), Vm(k,n) as a function of k rapidly decreases 
as k increases, assuming that n is arbitrary integer number. 
For k ≥ n+2, it is adequately smaller than Vm(n,n) to ignore 
Vm(k,n) in Fig. 2 (b). Then, the schrödinger equation is 
equivalent to the following equation.  
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where E0
m,n is the electron energy level in the cylindrical 2D 

quantum well and αn is a constant value determined by 

Bessel function. In this equation, electron energy level Em,n at 
zmax is derived, assuming the ∆V is a perturbation to the 
electronic static in the quantum well (Table. 1 (a)). With Em,n, 
the total charge Qtotal at zmax is derived as a function of ∆V by 
integrating Fermi distribution function and one-dimensional 
density-of-state (Table. 1 (b)). In addition, Qtotal is calculated 
by integrating Poisson’s equation in the model potential at 
zmax. Boundary conditions of Poisson’s equation relate Es/(−e) 
with ∆V and ∆V must satisfy the following equation obtained 
from Table.1 (b) and integrating Poisson’s equation: 

( ) VVQ sitotal ∆πε−=∆ 4 . 
The constant ∆V is obtained by numerically calculating this 
transcendental equation. The energies Ec,max, Es and Em,n are 
then calculated self-consistently using this ∆V, and IDS is 
obtained easily from the coupled Natori formura [2]. 
 
3. Result & Discussion 
Figures 3−5 show the results obtained using the presented 
compact model. Gate voltage dependences of Es, Ec,max, E0,0 
are shown in Fig. 3. In the subthreshold region, Es and Ec,max  
linearly follow VGS because the potential distribution in the 
2D quantum well at zmax is nearly flat. Electron occupation 
rate for each subband are shown in Fig. 4. For radius 2nm, 
Fig. 4 shows that it is enough to consider only the lowest two 
subbands in the Qtotal. Figure 5 demonstrates IDS−VGS and 
IDS−VDS characteristics obtained using our compact model. 
With our compact model, one IDS−VGS curve for 2nm is 
calculated within 2 minutes, while it would take much longer 
time with full numerical simulations. 
 
4. Conclusion 
An analytical compact expression of drain current for a 
ballistic cylindrical GAA-MOSFET is proposed. Surface 
potential, confinement potential shape, energy level of 
electron, density of electron in channel and drain current are 
obtained self-consistently by calculating numerically only 
one transcendental equation. Electron occupation rate for 
each subband as a function of radius has been analyzed with 
this model. IDS−VGS and IDS−VDS characteristics have been 
obtained within several minutes. We would compare between 
numerical simulations and compact model, and improve this 
model in future works. 
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Fig.3 Solid line Es, broken line Ec,max, and 
closed circle E0,0 are calculated as a function 
of VGS−VFB using compact model.  The source 
fermi energy EF,S is taken as referrence energy. 

Fig.1 GAA-MOSFET structures and schematic 
illustration of ballistic transport. (a) Schematic of
cylindrical GAA-MOSFET. The z−axis, radius 
component r, and angular component θ are set as 
shown in the figure. (b) Schematic of cross section 
perpendicular to z−axis. Radius is a and gate oxide 
thickness is tox. Semiconductor wire material is Si 
and gate oxide is SiO2. (c) Representation of 
ballistic transport in the z axis and conduction band 
energy distribution along the channel. 
(d) Schematic of potential energy distribution in 
the r−θ plane at zmax. Fermi level at source is EF,S, 
maximum energy level of distribution of 
conductionband minimum enery is Ec,max, SiO2/Si 
surface potential eneryg is Es and potential 
distribution in channel is V(r).

Fig.2 Magnitude of matrix elements Vm(k,n), where integers m, n and k are 
the quantum number. (a) Density plot of V0(k,n) for 0 ≤ n,k ≤ 5 . Diagonal 
matrix elements have the largest value. (b) For n = 0,1,2, |V0(k,n)/V0(n,n)| as a 
function of integer number k.

Fig.5 Calculated IDS−VGS and 
IDS−VDS characteristics for a = 2nm
using compact model.
(a) Drain current as a function of
VGS.
(b) Drain current as a function of
VDS (solid curve:VGS−VFB=0.5V  
broken curve:VGS−VFB=0.3V).
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Fig.4 Electron occupation rates for each subband as a function of radius. 
For VGS−VFB=0.5V and VDS=0.8V, EHm,n and ELm,n denote the electron
energy having the effective electron mass 2mlmt/(ml+mt) and mtin the r−θ
plane, respectively, where ml=0.91m* and mt=0.19m* (m* is electron rest 
mass). The QEm,n/Qtotal shows that how many subbands should be considered 
in drain current calculation. 
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Table.1 Expressions for electron energy level and total charge using Fermi distribution function and one-
dimensional density-of-states 
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