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1. Introduction 

 Poly(3-hexylthiophene) (P3HT) and 
1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 
(PCBM)-based bulk heterostructure has been one of the 
most studied organic photovoltaics (OPVs). Various me-
thods have been proposed to improve the cell efficiency. 
Efficiencies up to ~4-5% have been demonstrated [1-4].  
Among these successful approaches, post-annealing of such 
a bulk heterosturcture plays an important role that increases 
the crystallinity of the polymer and reduces the interface 
area, promoting the dissociation of the excitons and en-
hancing carrier transport behavior. Besides, nanoimprinting 
has been proven to improve the PCE and incident pho-
ton-to-electron efficiency (IPCE) of organic-based photo-
voltaic devices. [5-6] Previously, we reported that the im-
printing pressure under room temperature contributes to the 
charge mobility and the PCE. [7] In this paper, an attempt 
was made to combine the advantages of both the 
heat-treatment and imprinting to improve the OPVs. The 
process was called hot-pressing. By systematically tuning 
the pressure of the hot-pressing, the power conversion effi-
ciency (PCE) significantly increased by ~10% when a 0.3 
MPa pressure was used. The mechanism related to the PCE 
enhancement was attributed to the enhanced organic/metal 
contact properties. 

 
2. Experimental details 

 
Solar cell devices were fabricated on indium-tin oxide 

(ITO) glass each with an area of 21 2 cm× . Each piece of 
glass has six cells. The size of a cell ( 20.4 0.3 cm× ) was 
defined by the area of overlap between the strip cathode 
(Al) and the anode (ITO). The purified 
poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) 
(PEDOT:PSS) (Baytron P, HC Stark) was spin-coated 
(5000 rpm) on the patterned ITO, with a thickness of 30 nm, 
from aqueous solution. The 1:0.8 P3HT:PCBM (w/w) solu-
tion was prepared in chlorobenzene, and subsequently 
spin-coated at 2000 rpm on the top of the PEDOT:PSS 
layer. After the Al cathode was coated, the sample was 
hot-impressed at 160 oC. The pressing pressures applied to 
the samples were kept at 0.1, 0.2, 0.3, 0.4 and 0.5 MPa for 
1 min. 

 
3. Discussions 

Figure 1 shows the schematic of the hot-pressing 
process, in which a plain Si wafer was used as a stamp.  
Figures 2(a)-(d) show the open-circuit voltage (Voc), 

short-circuit current density (Jsc), fill factor (FF) and PCE 
as functions of hot-pressing pressure. The device perfor-
mance was optimized at an imprinting pressure of 0.3 MPa. 
Hot-impressing significantly increased the short-circuit 
current density (Jsc) and the fill factor (FF), increasing the 
power conversion efficiency (PCE) by ~10% when a 0.3 
MPa impressing pressure was used. The FF contributed 
most to the cell efficiency. 

  
Incident photon-to-current efficiency (IPCE) spectra 

were measured for samples with and without hot-pressing 
and were shown in Fig. 3. Device with hot-pressing showed 
higher quantum efficiency than that without hot-pressing in 
the vicinity of 400-500 nm, revealing that the hot-pressing 
could enhance the carrier transport beneath the metal con-
tact rather than enhance the ordering of the bulk hetero-
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Fig. 1 Schematic of the hot-pressing process of the organic 
solar cells 
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structure. 
 

Fig. 3 Incident photon-to-electron efficiency spectra of cells with 
and without imprinting. 
 

Figure 4 shows the current density-voltage relation for 
samples with and without hot-pressing. The improvement 
of PCE came from the Jsc mostly, indicating a modified 
carrier transport behaviors. This result consisted with the 
IPCE observation. 

Fig. 4 Dark and light current density-voltage relation for 
samples with and without hot-impressing. 

 
In order to clarify the mechanism that leads to the ef-

ficiency improvement, the electron-only devices were made 
by replacing the PEDOT:PSS layer with a thin Cs2CO3 
layer. [9-10] The electron mobility of the active layer were 
calculated according to the space-charge limited current 
model (SCLC) by fitting the dark J-C curves, as shown in 
Fig. 5. From the SCLC model, the current is given by 

32
09 / 8rJ V Lε ε μ=  where 0 rε ε is the permittivity, μ is the 

mobility, and L is the thickness, the electron mobility of the 
reference and hot-pressed samples were 7.52×10-5 cm2/ V-s 
and 18.9×10-5 cm2/ V-s, respectively. An increase of 2.5 
times in electron mobility by hot-pressing gives reason to 
the increase in Jsc and conversion efficiency.  

 
 

 

4. Conclusion 
This work demonstrates the effects of hot-pressing on 

poly (3-hexylthiophene) and 1- (3-methoxycarbonyl)- 
propyl-1-phenyl-(6,6)C61 (P3HT:PCBM)-blended organic 
solar cells. Hot-pressing significantly increased the 
short-circuit current density (Jsc) and the fill factor (FF), 
increasing the power conversion efficiency (PCE) by ~10% 
when a 0.3 MPa pressure was used. The FF contributed 
most to the cell efficiency. The mechanism related to the 
PCE enhancement was attributed to the enhanced organ-
ic/metal contact properties. 

Fig. 5 Dark current of the electron-only devices. 
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