Evaluation of Ferromagnetic Thin Film Noise Suppressor
Applied to On-Chip Transmission Lines

Sho Muroga, Yasushi Endo, Mitsuru Suzuki, Takayoshi Inagaki,
Yoshio Mitsuzuka and Masahiro Yamaguchi
Dept. of Electrical and Communication Engineering, Graduate School of Engineering, Tohoku University
6-6-05 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
Phone: +81-22-217-7061 E-mail: muroga@ecei.tohoku.ac.jp

1. Introduction
Recently the chip level electromagnetic interference (EMI) has become a serious problem owing to the switching current of the digital circuits and the increasing density of transistors integrated onto LSIs [1]. Noise suppression sheet (NSS) is a major noise suppressor used in electronic devices. NSS uses FMR for generating power losses and these losses are used for the noise suppression [2]. Soft magnetic thin film is an interesting candidate for the next generation RF electromagnetic noise suppressor on chip level EMI countermeasure because of the high FMR and Joule losses in the RF range [3][4]. Alloy and granular thin films have μ'' as much as 1000. As a result, films of thickness one tenth to one hundredth of present day films can be obtained if alloys and granular thin films are used.

This paper discusses the power losses in the magnetic film integrated onto a $2.5 \times 2.5 \text{mm}^2$ size chip fabricated using SOI-CMOS technology for the purpose of in-line noise suppression in semiconductor devices. Additionally, the noise suppression on the coplanar and microstrip line is demonstrated to find out the difference in loss from the structure of transmission line.

2. Experimental
The coplanar transmission line has been fabricated using a 0.15 μm five metal (4M + Thick Metal) SOI-CMOS technology on a high resistivity substrate. Metal layers are made of aluminum alloys. Permittivity of insulator between each metal layer is about 4. Fig.1 shows cross sectional view of the transmission line and ferromagnetic film. A signal line of width similar to that of power distribution line in chip is designed. Moreover, in order to avoid impedance mismatch, the characteristic impedance is made 50 Ω using coplanar line and microstrip line. The signal line of the coplanar line is 8.0 μm wide, 1964 μm long and 2 μm thick. The signal line of microstrip line is 11.5 μm wide, 1964 μm long and 2 μm thick. Fig.2 shows the photograph of the ferromagnetic thin film noise suppressor. The CoZrNb film is formed 0.86 mm wide, 1.91 mm long and 0.5 μm thick. The RF noise suppressor on transmission lines was composed with stacks of the CoZrNb/SiO$_2$/CoZrNb. These layers are deposited using RF sputtering. The thickness of each CoZrNb is 0.25 μm, the total thickness being 0.5 μm. The SiO$_2$ layer is 5 nm thick. The hard axis of the magnetic film is set in a direction perpendicular to the wave propagation of the coplanar transmission line. Fig. 3 shows the relative permeability of these films within the range of frequency 0.05 to 9 GHz.

Fig. 1 Cross-sectional view of transmission lines with integrated ferromagnetic noise suppressor.

Fig. 2 Photograph of the on-chip integrated ferromagnetic noise suppressor.

Fig. 3 Relative permeability of these films within the range of frequency 0.05 to 9 GHz.
FMR frequency shifts becoming proportional to and without the film. The signal transmission (\(s_{11} \)) of coplanar line with the magnetic film in comparison with that without film minus \(s_{11} \) is because of wave resonance while the integration of the magnetic film. The dip point at frequency of 18 GHz is because of impedance miss-matched due to the film above coplanar line, the magnetic flux entering the coplanar line than in case of microstrip line. In case of coplanar line than in case of microstrip line. The distance between return current and the film is smaller in these two structures, the loss in coplanar line is larger than that in case of microstrip line. The reason is thought to be that the assumption. Table 1 shows the loss of each transmission line losses are calculated on the basis of this study shows higher value than the result of ref. [3].

4. Conclusion
The noise suppression on the transmission line, fabricated in a 0.15 \(\mu \)m five metals SOI-CMOS technology with high resistivity substrate, has been demonstrated using the CoZrNb soft magnetic film. The power loss of 37% was obtained at the frequency of 7 GHz in coplanar line with film and 17% was obtained at the frequency of 5.4 GHz in microstrip line with film. As a result, a large loss was obtained by short length of the transmission line.

Acknowledgements
The authors would like to thank Y. Shimada for thoughtful discussions. The authors would like to thank N. Sato, for measurement of initial permeability. This work was supported in part by the Strategic Information and Communications R&D Promotion Programme (SCOPE) by Ministry of Internal Affairs, Japan. This work was also supported in part by R&D Center of Excellence for Integrated Microsystems, Tohoku University. The VLSI chip in this study was fabricated in the chip fabrication program of the VLSI Design and Education Center (VDEC) at the University of Tokyo in collaboration with Oki Electric Industry Co., Ltd.

References

Table 1 Comparison of the size and the power loss.

<table>
<thead>
<tr>
<th>Film</th>
<th>Length [mm]</th>
<th>Thickness [(\mu)] m</th>
<th>CPW</th>
<th>MSL</th>
<th>Ref. [3]</th>
<th>NSS(E25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.96</td>
<td>0.5</td>
<td>15</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.96</td>
<td>0.5</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.96</td>
<td>0.5</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.96</td>
<td>0.5</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.96</td>
<td>0.5</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 Signal attenuation, \(s_{11} \) and reflection, \(s_{11} \) on coplanar line with the CoZrNb film are shown in comparison with that without film.

Fig. 5 The power loss on transmission lines with the CoZrNb film are shown in comparison with that without film.

obtained at the frequency of 7 GHz in coplanar line with film and 17% was obtained at the frequency of 5.4 GHz in microstrip line with film. As a result, a large loss was obtained by short length of the transmission line.

Fig. 5 shows the ratio of power loss in the thin film noise suppressor \(\Delta P_{\text{loss}}/P_{\text{in}} \). This is calculated as \(P_{\text{loss}}/P_{\text{in}} \) with film minus \(P_{\text{loss}}/P_{\text{in}} \) without film. \(P_{\text{loss}}/P_{\text{in}} \) is calculated using the reflection \((s_{11}) \) and transmission \((s_{21}) \) parameters as, \(\Delta P_{\text{loss}}/P_{\text{in}} = 1 - (|s_{11}|^2 + |s_{21}|^2) \).

The \(\Delta P_{\text{loss}}/P_{\text{in}} \) of 37% was obtained at the frequency of 7 GHz in coplanar line and 17% was obtained at a frequency 5.4 GHz in microstrip line. Comparing the losses in these two structures, the loss in coplanar line is larger than the loss in microstrip line, except of 17 GHz of the resonance frequency. The reason is thought to be that the distance between return current and the film is smaller in case of coplanar line than in case of microstrip line. In case of film above coplanar line, the magnetic flux entering the film is more, resulting to greater loss.

Below is the comparison between the result of this work and that of ref. [3]. We had made a coplanar line with signal line by using Cu onto a glass substrate. It’s signal line is width of 50 \(\mu \)m and length 15 mm. The CoZrNb film is width of 4 mm, length of 15 mm and thickness of 0.5 \(\mu \)m. From ref. [4], the \(P_{\text{loss}}/P_{\text{in}} \) is proportional to (film length)\(^{0.7}\). Fig. 5 shows the value calculated by considering this assumption. Table 1 shows the loss of each transmission line at the frequency of 2.4 GHz and 5.2 GHz, the standard frequency of wireless LAN, and the loss at the frequency of 7 GHz. The length of NSS [6] is 50 mm. Other transmission line losses are calculated on the basis of transmission line length of 1.964 mm. Result obtained from this study shows higher value than the result of ref. [3]. This difference will be the main theme of further research. Additionally, noise suppression similar to NSS, is obtained by coplanar line at the frequency of 7 GHz.

Fig. 5 Signal attenuation, \(s_{21} \) and reflection, \(s_{11} \) on coplanar line with the CoZrNb film are shown in comparison with that without film.

Fig. 5 The power loss on transmission lines with the CoZrNb film are shown in comparison with that without film.

obtained at the frequency of 7 GHz in coplanar line with film and 17% was obtained at the frequency of 5.4 GHz in microstrip line with film. As a result, a large loss was obtained by short length of the transmission line.

Acknowledgements
The authors would like to thank Y. Shimada for thoughtful discussions. The authors would like to thank N. Sato, for measurement of initial permeability. This work was supported in part by the Strategic Information and Communications R&D Promotion Programme (SCOPE) by Ministry of Internal Affairs, Japan. This work was also supported in part by R&D Center of Excellence for Integrated Microsystems, Tohoku University. The VLSI chip in this study was fabricated in the chip fabrication program of the VLSI Design and Education Center (VDEC) at the University of Tokyo in collaboration with Oki Electric Industry Co., Ltd.