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1. Introduction 

Because of the weak Van der Waals interaction be-
tween organic molecules, mechanically flexible films of 
organic semiconductor and organic dielectric can be made 
at low temperature typically below 150°C. Therefore or-
ganic TFTs (OTFTs) can be directly fabricated on a flexible 
substrate such a plastic and a thin metal foil, providing a lot 
of advantages over a conventional glass substrate, such as 
their mechanical robustness, flexibility, lightweight and 
lower cost. In addition, many organic materials can be dis-
solved in organic solvents and organic thin films can be 
easily formed or patterned by using a solution or a printing 
process without use of vacuum equipments. With these 
advantages, OTFTs have been being expected to achieve 
attractive novel applications, such as flexible displays [1-4], 
electric papers [5-7], low-cost RF-ID tags [8] and 
large-area sensors [9].  

We have demonstrated OTFT-driven-flexible 
AM-TN-LCD[1], AM-polymer-dispersed-LCD driven by 
solution-processed OTFTs[2], flexible OTFT-driven 
full-color AM-OLEDs [3,4] and printed flexible 
OTFT-driven-AM-electrophoretic display(EPD)[5,7]. In 
this paper, we will present material, process and device 
technologies to achieve these demonstrations with mainly 
focusing on the OTFT-driven AM-OLED and AM-EPD.  
 
2. OTFT-driven AM-OLED 
Pixel Structure and Integration 
 For a pixel circuit, we have employed the conventional 
2T-1C circuit in an OTFT-driven AM-OLED as shown in 
Fig 1.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  2T-1C pixel circuit of AM-OLED 
 

A stacked top-emission structure is used and the schematic 
cross-sectional view of a pixel is shown in Fig.2. In a back-
plane, bottom-gate pentacene TFTs with channel length of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Schematic cross-section of the top-emission 
OTFT-driven OLED display 
 
5 μm are used for a switch and drive TFTs. In OTFTs, gold 
or cupper electrodes are used for source/drain (S/D) elec-
trodes. We made a layer of gate insulator by spin-coating a 
solution of poly(4-vinylphenol) (PVP) and cross-linker. 
Polycrystalline pentacene have been deposited by thermal 
evaporation as a semiconductor layer. Solution-processed 
polymer dielectric is used as an interlayer dielectric. An 
OLED layer has been made by thermal evaporation with a 
shadow mask. The maximum process temperature is 150 C. 
The pentacene TFT shows apparent mobility of 0.1 cm2/Vs 
and on/off ratio > 106.  
 An optical microscope image of the pixel is shown in Fig. 
3. The OTFT backplane is designed for a top-emission 
2.5-inch full-color 160 (data lines) × RGB × 120 (scan 
lines) AM-OLED display with a resolution of 80 ppi, in 
which the dimensions of the main pixel are 318 μm ×   
318 μm.. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Optical microscope image of a pixel 
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Demonstration 
 Fig. 4 shows a photograph of the display under bending 
condition is shown in Fig. 6. The panel clearly displayed 
moving images at a frame rate of 60 Hz even after 10,000 
times bending with radius of 4 cm for 25 hours. The display 
achieved a maximum brightness of over 200 cd/m2 with a 
contrast of over 1000:1 within a signal-voltage range of  
12 V[4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Photograph of OTFT-driven 2.5-in QQVGA flexible  
AM-OLED 
 
3. Printed OTFT-driven AM-EPD 
Pixel Structure and Integration 
 Fig. 5 shows a schematic cross-sectional view of a 
field-shielded OTFT pixel we have developed to drive an 
EPD. We have originally developed soluble small-molecule 
organic semiconductor, peri-xanthenoxanthene (PXX) de-
rivative which shows high mobility 0.4 cm2/Vs and high 
thermal stability [10]. This PXX was patterned by inkjet 
printing method and encapsulated by screen printing of a 
fluoropolymer. 

Fig.5 Schematic cross-section of the backplane for a 
OTFT-driven EPD. 
 
Demonstration 
We completed a flexible EPD after lamination with E Ink 

imaging film on the backplane we developed. The size of 
this display is 4.8 inch diagonal. The number of pixel and 

resolution is VGA(640×480) and 169 dpi with pixel size of 
150 μm × 150 μm Fig. 6 shows a 16-bit grayscale image of 
our OTFT-driven EPD. The voltages applied to the data 
line and the scan line were 30 Vp-p and 40 Vp-p, respec-
tively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Photograph of printed OTFT-driven 4.8-VGA flexi-
ble AM-EPD. 
 
 
4. Summary 
 We have developed and demonstrated an OTFT-driven 
flexible AM-OLED and a printed OTFT-driven AM-EPD. 
Their low-temperature process, great mechanical flexi-
bility and potential of manufacturing by printing process 
are expected to be promising for future flexible display. 
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