A 1.2V Operation 2.43 Times Higher Power Efficiency Adaptive Charge Pump Circuit with Optimized V_{TH} at Each Pump Stage for Ferroelectric (Fe)-NAND Flash Memories

Shinji Noda¹, Teruyoshi Hatanaka¹, Mitsue Takahashi², Shigeki Sakai² and Ken Takeuchi¹

¹University of Tokyo, Dept. of Electrical Engineering and Information Systems, Japan, E-mail: shinji-noda@lsi.t.u-tokyo.ac.jp ²National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

1. Introduction

The Ferroelectric (Fe)-NAND flash memory device [1-3] and high-speed highly reliable memory circuits [4] were proposed to decrease the power consumption of data centers (Fig.1,2). Key benefits of Fe-NAND are 1) a high reliability where the program/erase cycles increases from 10^4 to 10^8 cycles and 2) a low voltage/power consumption where the program/erase voltage decreases from 20V of the floating-gate NAND to 6V. As the feature size decreases below 30nm, the inter bit-line capacitance drastically increases and the power consumption increases by 38% [5]. By decreasing the power supply, V_{DD} , from 3.3V to 1.2V, the power consumption of the memory core decreases by 87%. However, the power consumption of the conventional charge pump [6] to generate read/program/erase voltage triples [7]. To realize low voltage and low power Fe-NAND flash memories, this paper proposes an adaptive charge pump that increases the power efficiency and the output voltage by 143% and 25% without circuit area and process step penalty. 2. Problems of the Conventional Charge Pump

In the proposed 1.2V Fe-NAND flash memory, V_{READ} and V_{PGM} charge pump circuits generate a read voltage, 2V and a program voltage, 6V from V_{DD}, 1.2V (Fig.1). Fig.3(a)(b) shows the conventional charge pump. The transistor $V_{\rm TH}$ of all pump stages is fixed at $V_{\text{TH}_{\text{MOS}}}$. As shown in Fig.4(a),(b), $V_{\text{TH}_{\text{MOS}}}$ has optimal values to maximize the power efficiency or the output voltage, V_{OUT} . If $V_{\text{TH MOS}}$ is too high, the large V_{TH} loss of MOS diodes decreases the power efficiency and V_{OUT} . On the other hand, if $V_{\text{TH MOS}}$ is too low, the transistor does not function as a rectifier and the output current flows backward from the output to the input. The optimal $V_{\rm TH MOS}$ of the conventional $V_{\rm PGM}$ charge pump to maximize the power efficiency is -0.6V (Fig.4(b)) that is lower than the conventional V_{READ} charge pump, -0.3V (Fig.4(a)). In the V_{PGM} charge pump as V_{OUT} is higher than that of the V_{READ} charge pump, the V_{TH} increases due to the larger body effect and thus the optimal $V_{\rm TH_MOS}$ becomes lower. If $V_{\text{TH}_{MOS}}$ is -0.3V to maximize the power efficiency of the V_{READ} charge pump, the power efficiency of the V_{PGM} charge pump is 127% smaller than the optimal value with $V_{\text{TH}_{\text{MOS}}}$ =-0.6V. Similarly, if $V_{\text{TH}_{\text{MOS}}}$ is -0.5V to maximize V_{OUT} of the V_{READ} charge pump, V_{OUT} of the V_{PGM} charge pump decreases by 19% from its maximum value with $V_{\text{TH MOS}}$ =-1.0V. 3. Proposed Dual V_{TH} Charge Pump Circuit

To increase the power efficiency and V_{OUT} of the V_{PGM} charge

pump, this paper proposes a dual V_{TH} charge pump (Fig.3(c)(d)). Ferroelectric (Fe)-FETs are used as diodes to change the $V_{\rm TH}$ by the program/erase. There is no area or process overhead as Fe-FETs in the charge pump are fabricated with the same process steps as memory cells. The V_{TH} of V_{READ} and V_{PGM} charge pumps are uniform with $V_{\text{TH}_{\text{READ}}}$ and $V_{\text{TH}_{\text{PGM}}}$. By changing the V_{TH} of Fe-FETs, $V_{\text{TH}_{\text{READ}}}$ and $V_{\text{TH}_{\text{PGM}}}$ are independently optimized at -0.3V (Fig.4(a)) and -0.6V (Fig.4(c)). As a result, the power efficiency of the V_{PGM} charge pump increases by 127%. By selecting $V_{\text{TH READ}}$ and $V_{\text{TH PGM}}$ as -0.5V and -1.0V, V_{OUT} of both V_{READ} and V_{PGM} charge pumps are also maximized. V_{OUT} of the V_{PGM} charge pump increases by 19%.

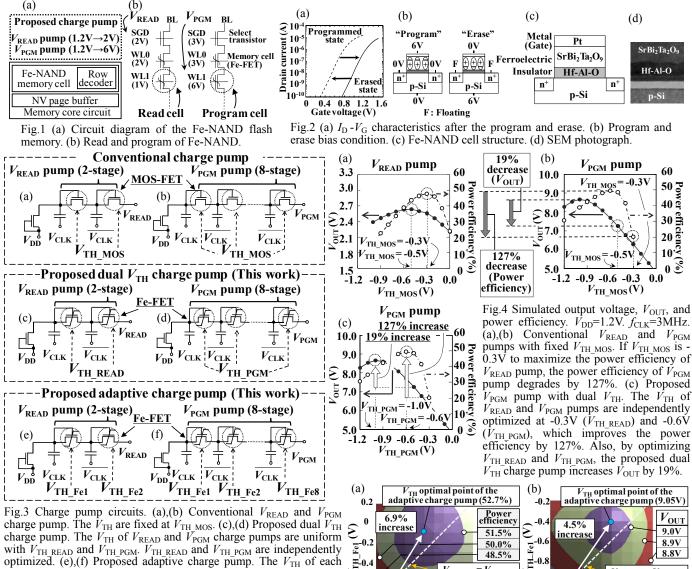
4. Proposed Adaptive Charge Pump Circuit

To further increase the power efficiency and V_{OUT} , this paper also proposes an adaptive charge pump (Fig.3(e)(f)). The V_{TH} of both V_{READ} and V_{PGM} charge pumps are different with $V_{\text{TH Fel}}$. $_{2...8}$ at each pump stage. $V_{\text{TH}_{\text{Fel}}, 2...8}$ has a relationship of $V_{\text{TH}_{\text{Fel}}}$ $> V_{\text{TH Fe2}} > ... > V_{\text{TH Fe8}}$ because at a pump stage closer to the output the source voltage increases and the $V_{\rm TH}$ shift due to the body effect also increases. Fig.5 shows the simulated power efficiency and V_{OUT} of the adaptive charge pump. Compared with the dual $V_{\rm TH}$ charge pump, the adaptive charge pump increases the power efficiency and V_{OUT} by 6.9% and 4.5%. Table 1 summarizes the conventional and proposed charge pumps. The adaptive charge pump is most power efficient and has the highest V_{OUT} as the V_{TH} at each pump stage is best optimized. Compared with the conventional charge pump, the power efficiency and V_{OUT} increase by 143% and 25%.

5. Measurement Results

Fig.6 shows the detailed operation of the proposed adaptive charge pump. Fig.6(a) shows the boosting to generate V_{READ} , 2V and V_{PGM} , 6V from V_{DD} . During the boosting, the well of Fe-FETs is grounded so that the $V_{\rm TH}$ of Fe-FETs is fixed at the optimal values. Erase, program and the $V_{\rm TH}$ measurement (Fig.6(b),(c),(d)) are performed only once during the testing to adjust the V_{TH} . A high voltage such as program/erase voltage biased to Fe-FETs inputs from the testing equipment. As the first step of the $V_{\rm TH}$ adjustment, the erase is performed by biasing the well of Fe-FET to 6V (Fig.6(b)). $V_{\text{TH}_{\text{Fel}, 2...8}}$ all increases to a positive value. Next, the program voltage, 5~6V, is applied to the gate of Fe-FETs and $V_{\text{TH}_{\text{Fel}, 2...8}}$ decreases (Fig.6(c)). In the $V_{\rm TH}$ measurement, a negative $V_{\rm TH}$ is measured by applying 1V to the source, 1.1V to the drain and 0~1V to the gate (Fig.6(d)). Program and the $V_{\rm TH}$ measurement are repeated until the $V_{\rm TH}$ at each pump stage reaches the optimal value.

Fig.7 shows a microphotograph of the proposed circuit. Fig.8 shows measured $V_{\rm OUT}$ versus the $V_{\rm TH}$. As the $V_{\rm TH}$ decreases, $V_{\rm OUT}$ increases, which is consistent with simulated results. Fig.9 (a) shows the measured $V_{\rm TH}$ shift of Fe-FETs due to the disturb during the boosting. Fig.9 (b) describes the disturb of Fe-FETs. While a voltage higher than V_{DD} is biased to Fe-FETs, the V_{TH} shift of Fe-FET is negligibly small irrespective of the operation cycles and $V_{\rm DD}$ and a highly reliable operation is realized.


6. Conclusion

A 1.2V adaptive charge pump for low power Fe-NAND is proposed and experimentally demonstrated. The chip is fabricated with the CMOS compatible Fe-FET process [1]. By using Fe-FETs as diodes in the charge pump and optimizing the $V_{\rm TH}$ at each pump stage, the power efficiency and $V_{\rm OUT}$ increase by 143% and 25% without circuit area and process step penalty. Fe-FETs in the proposed circuit are immune to the disturb and a highly reliable operation is experimentally demonstrated.

Acknowledgements

The authors appreciate K. Miyaji, R. Yajima and S. Tanakamaru for their support. This work is partially supported by NEDO. References

- [1] S. Sakai et al., NVSMW, pp.124-125 (2008).
- [2] T. Hatanaka et al., ESSDERC (2009).
- [3] R. Yajima et al., SSDM (2009).
- [4] T. Hatanaka et al., Symp. VLSI Circuits, pp.124-125 (2009).
- [5] K. Takeuchi, Symp. VLSI Circuits, pp.124-125 (2008).
- [6] J. F. Dickson, J.SSC, pp.374-378 (1976).
- [7] K. Ishida et al., ISSCC, pp.238-239 (2009).

-0.6

-0.

-0.8 -0.6

optimized. (e),(f) Proposed adaptive charge pump. The V_{TH} of each transistor in V_{READ} and V_{PGM} charge pumps are different with $V_{\text{TH}_{\text{FE1}}}$, 2...8 and are best optimized to maximize the power efficiency of both V_{READ} and V_{PGM} charge pumps.

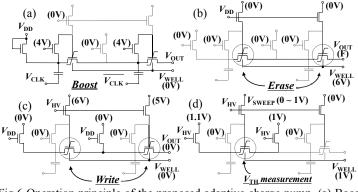
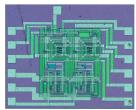



Fig.6 Operation principle of the proposed adaptive charge pump. (a) Boost. (b) Erase. (c) Program. (d) $V_{\rm TH}$ measurement. (b),(c),(d) are performed only once during the testing to adjust the $V_{\rm TH}$. High voltage such as write/erase voltage input from the testing equipment.

proposed adaptive V_{READ} pump.

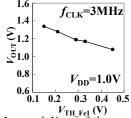


Fig.7 Chip microphotograph of the Fig.8 Measured V_{OUT} of the proposed adaptive charge pump. By reducing the V_{TH}, V_{OUT} increases.

 $V_{TH_Fe2}(V)$ V_{TH_Fe2} (V) Fig.5 Simulated power efficiency and V_{OUT} of the proposed adaptive charge pump. The $V_{\rm TH}$ of each transistor is individually optimized. (a),(b) Power efficiency and V_{OUT} of V_{PGM} pump vs. $V_{TH Fe1}$ and $V_{\text{TH}_{\text{Fe2}}}$. Compared with the proposed dual \hat{V}_{TH} charge pump, the power efficiency and V_{OUT} increase by 6.9% and 4.5%.

-1.0

 $V_{\text{TH Fe1}} = V_{\text{TH Fe2}}$

V_{TH} optimal point of the dual V_{TH} charge pump (8.66V)

 $V_{\text{TH}_{\text{Fe1}}} = V_{\text{TH}_{\text{Fe2}}}$

V_{TH} optimal point of the dual V_{TH} charge pump (49.3%)

-0.4 -0.2 0 0.2

Table 1 Comparison of the conventional and the proposed charge pump circuits. V_{OUT} is the output voltage.

	Conventional	Proposed dual V _{TH}	Proposed adaptive
	charge pump	charge pump	charge pump
Power	21.7	49.3	52.7
efficiency (%)	(x1.00)	(x2.27)	(x2.43)
V _{OUT} (V)	7.26	8.66	9.05
	(x1.00)	(x1.19)	(x1.25)
Circuit area (a.u.)	1	1	1

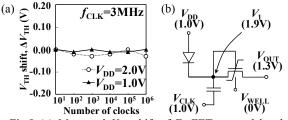


Fig.9 (a) Measured $V_{\rm TH}$ shift of Fe-FETs caused by the disturb during the boosting. (b) Bias condition of the disturb. Since the measured $V_{\rm TH}$ shift is negligibly small irrespective of the operation cycles and the power supply, $V_{\rm DD}$, the proposed circuit is immune to the disturb.