# Switching Mechanism of TaOx ReRAM

Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, S. Muraoka, S. Mitani, S. Fujii, K.Katayama, T.Ninomiya, and T. Takagi

Advanced Devices Development Center, Panasonic Corporation 3-1-1 Yagumo-naka-machi, Moriguchi City, Osaka 570-8501, Japan Tel: +81-6-6906-4902, Fax: +81-6-6906-8100, E-mail: wei.zhiqiang@jp.panasonic.com

# 1. Introduction

Recently, various binary oxides [1-5] have been reported for memory applications, but reliability aspects are much less developed. To estimate the reliability characteristics, understanding resistive switching mechanisms is highly demanded. Among various proposed mechanisms, we focused on the redox reaction, since some evidence was obtained in the forming process [1]. According to this mechanism, the stability of the resistance states corresponds to the stability of the redox pair. Generally, the lower the absolute value of the reaction Gibbs energy ( $\Delta G$ ) of the redox reaction, the lower the reactivity.

In this paper, we report a combined theoretical and experimental study of the resistive switching mechanism.  $\Delta G$  of various kinds of resistance change materials was calculated. Experimentally we have developed and fabricated special devices to clarify where, and what happened in ReRAM. Data retention results of TaO<sub>x</sub> agree well with the calculation results.

# 2. Calculation

We calculated the reaction Gibbs energy ( $\Delta G$ ) for various kinds of resistance change materials. Among these materials, redox pair of TaO<sub>2</sub>/Ta<sub>2</sub>O<sub>5</sub> showed the smallest reaction Gibbs energy. A schematic potential energy curve for TaO<sub>x</sub> is shown in Fig.1. The redox reaction of TaO<sub>x</sub> can be expressed as

$$2\text{TaO}_2 + \text{O}^2 \leftarrow \rightarrow \text{Ta}_2\text{O}_5 + 2e \qquad (1)$$

This indicates that both the high resistance state (HRS) and the low resistance state (LRS) of  $TaO_x$  are stable. In other words,  $TaO_x$  with redox pair of  $TaO_2/Ta_2O_5$  can be used to realize highly reliable ReRAM.

#### 3. Experiment and Discussion

To investigate where the resistive switching phenomenon takes place in TaOx films, we fabricated the device with 4 electrodes shown in Fig.2(a). Monitoring resistive switching between each terminal concurrently makes it possible to pinpoint the location of the resistance change. As shown in Fig.2(b), by applying negative pulses to electrode A, only the resistances involving electrode B (the region (1), (4) and (6)) changed. This indicates that the resistive switching had taken place locally near electrode B. This result identifies the resistive switching region as being localized at the interface near the anode.

A large area test vehicle was fabricated for clarifying the redox reaction mechanism, As shown in Fig.3(a), the test vehicle contains 100 cells; each cell has an area of  $5 \times 20 \ \mu m^2$ . After setting the test vehicle to HRS or LRS, the top electrode was thinned to 10 nm. Initial, HRS and LRS test vehicles were examined by Hard X-ray Photoemission Spectroscopy (HX-PES). With this non-destructive experiment technique, we succeeded in observing the Ta 4d bands at the deeply buried interface between anode electrode and TaO<sub>x</sub> thin film. As shown in Fig.3(b) and Fig.3(c), the

ratio of  $TaO_{2-\beta}/Ta_2O_{5-\delta}$  increases with a sequence of initial, HRS and LRS, indicating that the  $Ta_2O_{5-\delta}$  component is reduced to the  $TaO_{2-\beta}$  component. These results show the first direct evidence of the redox reaction mechanism.

To enhance the redox reaction in the resistance switching region near the anode, the oxygen profile of the  $TaO_x$  thin film was controlled by annealing in oxygen ambient. X-ray Photoemission Spectroscopy (XPS) spectra show that the bulk material consists of only  $TaO_{2-\beta}$ , while  $Ta_2O_{5-\delta}$  appears near the anode, where  $\beta$  and  $\delta$  mean that the phases are close to  $TaO_2$  and  $Ta_2O_5$ , respectively (Fig.4).

The optimized Pt/TaO<sub>x</sub>/Pt memory cell with an area of 0.5  $\times$  0.5  $\mu$ m<sup>2</sup> shows excellent memory properties. The linear trend of *log(I)-V<sup>1/2</sup>* for both HRS and LRS indicates the possibility of Schottky emission (Fig.5). Note that resistive switching is also related to the work function of the electrode, it appears that the Schottky barrier at the Pt/TaO<sub>x</sub> interface dominates the *I-V* characteristics.

According to the electric properties and the physical analysis results, the resistive switching occurs on modulation of the barrier height between the anode and TaO<sub>x</sub> caused by the redox reaction (Fig.6). The interface layer between the anode and bulk TaO<sub>x</sub> includes  $Ta_2O_{5-\delta}$  and  $TaO_{2-\beta}$ . For a reset operation, by applying the positive voltage pulse on the anode electrode, O<sup>2-</sup> ions migrate from the bulk TaO<sub>x</sub>, which is assumed as an oxygen reservoir, and accumulate around the anode. Then the oxidization reaction of the TaO<sub>2- $\beta$ </sub> and O<sup>2-</sup> leads to the formation of the Ta<sub>2</sub>O<sub>5- $\delta$ </sub> according to the reaction formula (1). Increasing of the Ta<sub>2</sub>O<sub>5- $\delta$ </sub> component enlarges the band gap and increases the barrier height [6]. As a result, the resistance state changes to HRS.

Fig.7 shows the retention characteristic of  $TaO_x$  ReRAM. For  $TaO_x$  ReRAM, the resistance of HRS and LRS is almost constant after 3000 h at 150°C.

#### 4. Conclusion

The origin of the resistive switching is attributed to the modulation of the barrier height between the anode and  $TaO_x$  caused by the redox reaction. Excellent retention characteristic indicates that  $TaO_x$  ReRAM is a promising device for next-generation high density nonvolatile memory.

## Acknowledgement

The authors would like to thank R. Yasuhara, K.Horiba, H.Kumigashira, and M. Oshima of The University of Tokyo for measurements and helpful discussions. The HX-PES measurements were carried out on the BL47XU of SPring-8.

## References

- [1] A. Odagawa, et.al., Appl. Phys. Lett. 91, 133503 (2007)
- [2] S. Muraoka, et.al., IEDM Tech. Dig., p.779 (2007)
- [3] I. G. Beak, et.al., *IEDM Tech. Dig.*, p.587 (2004)
- [4] A. Chen, et.al., *IEDM Tech Dig.*, p.746 (2005)
- [5] Z. Wei et.al., *IEDM Tech Dig.*, p.293 (2008)
- [6] J. Y. Zhang, et.al., Appl. Surf. Sci. 154, 17 (2000)





Figure 1 Potential energy curve of  $\text{TaO}_{\boldsymbol{x}}$  redox pair





Figure 3 (a) Top view and cross-section view of the large area test vehicle, (b) Ta 4d HX-PES spectra of TaOx large area test vehicle, insert is a cross section of the large area test vehicle, (c) Relative intensity ratio of  $TaO_{2-\beta}/Ta_2O_{5-\delta}$ 



Figure 4 XPS spectra of  $\mbox{TaO}_x$  near the anode and in the bulk



Figure 6 Modulation of the barrier height corresponding to redox reaction



Figure 5 Schottky plot of *I-V* curve of a TaOx ReRAM memory cell in pulse voltage sweep.



Figure7 Data retention properties of TaOx ReRAM memory cells