Formation of High Ge concentration Virtual Substrate by Laser Annealing

C. Y. Ong¹, K. L. Pey¹, J. P. Liu², Q. Wang², C. P. Wong³, Z. X. Shen³, X. C. Wang⁴, H. Zheng⁴, C. M. Ng², and L. Chan²

¹Microelectronics Center, School of Electrical and Electronic Engineering, Nanyang Technological University.

²Chartered Semiconductor Manufacturing Ltd.

³Div. of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University.

⁴Singapore Institute of Manufacturing Technology.

Phone: +65 67906371, Fax: +65 67933318, E-mail: eklpey@ntu.edu.sg

1. INTRODUCTION

SiGe alloy has been studied widely due to their extensive applications. Due to the smaller lattice mismatch with gallium arsenide (GaAs) as compared to Si, high Ge concentration Si_{1-x}Ge_x or pure Ge grown on Si substrate is used as a virtual substrate to integrate III-V materials [1]. In addition, Ge offers increased carrier mobility over pure Si. Ge and Ge-rich SiGe have been used in transistors to obtain high performance PMOSFETs [2]. It is very likely that these materials will be used for high performance CMOS technology beyond the 22 nm technology node.

High Ge concentration of $Si_{1-x}Ge_x$ is likely to induce strain relaxation and dislocation propagation, which will result in the devices degradation. Graded $Si_{1-x}Ge_x$ has been proposed to minimize the dislocation nucleation and propagation [3]. However, this is usually done by MBE or UHV-CVD, and the graded layer is very thick to minimize the threading dislocations [4]. In this paper, we propose to use laser annealing (LA) to obtain a thin graded $Si_{1-x}Ge_x$ virtual substrate with high Ge concentration (~60%) at the near-surface region. Comparing with the sample annealed by RTA, LA shows the advantage of preventing the formation of large density defects at the $Si_{1-x}Ge_x/Si$ interface.

2. EXPERIMENT

The process sequence for the Si_{1-x}Ge_x virtual substrate fabrication is shown in Fig. 1. The starting materials for the fabrication of virtual substrate are *p*-type B-doped Si (100) wafers. High quality of Si_{1-y}Ge_y films was grown on Si substrates by ultra high vacuum chemical-vapor deposition (UHV-CVD). The metastable films have a 50 nm uniform Si_{1y}Ge_y with $y \approx 23\%$, as shown in Fig. 2(a). Subsequently, a 30 nm α -Ge layer was deposited on top of the Si_{1-y}Ge_y layer by electron-beam evaporation. The samples were then annealed by RTA at 950 °C for 30 s or by LA. LA was carried out in nitrogen ambient using a pulsed KrF excimer laser with a wavelength of 248 nm and a FWHM of 23 ns.

3. RESULTS AND DISCUSSION

Figure 2(a) shows the cross-sectional TEM (XTEM) micrograph of a $Si_{1-y}Ge_y$ layer deposited by UHV-CVD. The metastable film is of very high quality and no observable defect is found at the interface, as indicated in Fig. 2(b).

For the sample deposited with a layer of 30 nm α -Ge and RTA at 950°C for 30 s, the XTEM micrographs show that the Si_{1-y}Ge_y film has been relaxed and dislocations are formed at the Si_{1-y}Ge_y/Si interface, due to the lattice mismatch between the Si_{1-y}Ge_y and Si (Figs. 3(a) and (b)). For the sample deposited with a layer of 30 nm α -Ge and LA at 0.7 J/cm² (10

pulses), two interfaces are observed, as shown in Fig. 4. From Fig. 5, the melt depth induced by the $0.7 \text{ J/cm}^2 \text{ LA}$ is estimated to be \sim 65 nm by the simulation of the temperature profile using the heat transfer module of COMSOL Multiphysics. This explains the observation of two interfaces in the LA sample. The laser fluence of 0.7 J/cm² is high enough to cause the whole α -Ge layer and part of the Si_{1-v}Ge_v to melt. The Ge and Si atoms intermix at liquid phase and form a high Ge concentration $Si_{1-x}Ge_x$ layer. The corresponding XTEM micrograph shows insignificant formation of dislocation at both Si_{1-x}Ge_x/Si_{1-y}Ge_y and Si₁₋ $_{v}Ge_{v}/Si$ interfaces (Fig. 4). SIMS data of the LA sample is shown in Fig. 6 and the Ge concentration extracted from SIMS is revealed (inset). The $Si_{1-x}Ge_x$ layer has graded Ge concentration; Ge fraction varies from $\sim 60\%$ to $\sim 23\%$. The graded $Si_{1-x}Ge_x$ layer might play a significant role to prevent the high strain induced between the high Ge fraction Si_{1-x}Ge_x layer and the Si substrate, impeding the large amount of dislocations formation. In addition, the non-melt Si substrate acts as an effective heat sink, thus the cooling rate is too fast for the defect formation during the annealing process. As a result, no significant dislocation is observed at the two interfaces in this sample.

Fig. 7 shows the 532 nm Raman spectrum of the asdeposited sample and the samples annealed by RTA and LA. For the as-deposited sample, the Ge-Ge peak is broad, indicating the amorphous phase of this layer. Comparing Fig. 7(b) with Fig. 7(c), the Si_{1-x}Ge_x/Si_{1-y}Ge_y layer in the sample annealed by RTA has a higher average Ge concentration as compared to that annealed by LA. This can be shown by the higher Ge-Ge to Si-Ge peak intensity ratio for the sample that undergone RTA [5]. The reason is because 950 °C is insufficient to melt the Si_{1-y}Ge_y layer and hence it reduces the intermixing between the Ge and Si₁. _yGe_y layer.

4. SUMMARY

High Ge fraction $Si_{1-x}Ge_x$ virtual substrate fabricated by LA has been demonstrated. The graded $Si_{1-x}Ge_x$ formed by LA helps to reduce the dislocation formation at the SiGe/Si interface. By depositing a thicker layer of α -Ge, it is possible to obtain a higher Ge fraction near the surface with low defect density by using LA technique. References:

- [1] E. A. Fitzerald et al. J. Vac. Sci. Technol. B 10, 1807 (1992).
- [2] S. Thompson et al. p.61, IEDM Tech. Dig. (2002).
- [3] J.-P. Han et al. IEDM Tech. Dig., 2006, pp.1-4.
- [4] D. J. Paul, Semicond. Sci. Technol. 19, R75 (2004).
- [5] J. C. Tsang et al. JAP. 75, 8098 (1994).

Process flow 50 nm SiGe (23 %) deposition by UHV-CVD 30 nm α-Ge deposited by e-beam evaporation Crystallization

Laser annealing (LA) or Rapid thermal annealing (RTA)

Fig. 2. (a) XTEM of a sample after the deposition of $Si_{1,y}Ge_y$ on Si by UHV-CVD. Fig. 2 (b) shows the high quality and defect free at the interface of $Si_{1,y}Ge_y/Si$.

Fig. 3. (a) XTEM of a sample after a 30 nm α -Ge deposition and annealed at 950°C, 30s by RTA. Fig. 3 (b) shows a high density defects formation at the interface of Si_{1-y}Ge_y/Si.

Fig. 1. (a) Process flow used for fabricating high Ge concentration $Si_{1-x}Ge_x$ virtual substrate.

Fig. 4. XTEM of a sample after a deposition of 30 nm α -Ge and annealed by LA at 0.7 J/cm², 10 pulses. No observable defect formed at the Si_{1-x}Ge_y/Si interface. The melt depth induced by LA is ~63 nm.

Fig. 5. Simulation of the temperature profile using the heat transfer module of COMSOL Multiphysics. The melt depth induced by LA at 0.7 J/cm^2 is estimated to be ~65 nm.

Fig. 6. SIMS profiling shows the Si and Ge atoms depth profile in the sample annealed by LA at 0.7 J/cm^2 for 10 pulses. The inset shows the Ge concentration extracted by SIMS.

Fig. 7. 532 nm Raman spectrum of (a) as-deposited sample; (b) sample went through RTA at 950°C 30s; and (c) sample went through LA at 0.7 J/cm² for 10 pulses. The peaks from the Si_{1-y}Ge_y layer in the as-deposited sample (a) are too weak to be detected.