
1. INTRODUCTION 
SiGe alloy has been studied widely due to their extensive 

applications. Due to the smaller lattice mismatch with gallium 
arsenide (GaAs) as compared to Si, high Ge concentration Si1-

xGex or pure Ge grown on Si substrate is used as a virtual 
substrate to integrate III-V materials [1]. In addition, Ge offers 
increased carrier mobility over pure Si. Ge and Ge-rich SiGe 
have been used in transistors to obtain high performance 
PMOSFETs [2]. It is very likely that these materials will be 
used for high performance CMOS technology beyond the 22 
nm technology node.  

High Ge concentration of Si1-xGex is likely to induce strain 
relaxation and dislocation propagation, which will result in the 
devices degradation. Graded Si1-xGex has been proposed to 
minimize the dislocation nucleation and propagation [3]. 
However, this is usually done by MBE or UHV-CVD, and the 
graded layer is very thick to minimize the threading 
dislocations [4]. In this paper, we propose to use laser annealing 
(LA) to obtain a thin graded Si1-xGex virtual substrate with high 
Ge concentration (~60%) at the near-surface region. Comparing 
with the sample annealed by RTA, LA shows the advantage of 
preventing the formation of large density defects at the Si1-

yGey/Si interface.  
2. EXPERIMENT 

The process sequence for the Si1-xGex virtual substrate 
fabrication is shown in Fig. 1. The starting materials for the 
fabrication of virtual substrate are p-type B-doped Si (100) 
wafers. High quality of Si1-yGey films was grown on Si 
substrates by ultra high vacuum chemical-vapor deposition 
(UHV-CVD). The metastable films have a 50 nm uniform Si1-

yGey with y ≈ 23%, as shown in Fig. 2(a). Subsequently, a 30 
nm α-Ge layer was deposited on top of the Si1-yGey layer by 
electron-beam evaporation. The samples were then annealed by 
RTA at 950 °C for 30 s or by LA. LA was carried out in 
nitrogen ambient using a pulsed KrF excimer laser with a 
wavelength of 248 nm and a FWHM of 23 ns. 

3. RESULTS AND DISCUSSION 
Figure 2(a) shows the cross-sectional TEM (XTEM) 

micrograph of a Si1-yGey layer deposited by UHV-CVD. The 
metastable film is of very high quality and no observable defect 
is found at the interface, as indicated in Fig. 2(b).  

For the sample deposited with a layer of 30 nm α-Ge and 
RTA at 950°C for 30 s, the XTEM micrographs show that the 
Si1-yGey film has been relaxed and dislocations are formed at 
the Si1-yGey/Si interface, due to the lattice mismatch between 
the Si1-yGey and Si (Figs. 3(a) and (b)). For the sample 
deposited with a layer of 30 nm α-Ge and LA at 0.7 J/cm2 (10 

pulses), two interfaces are observed, as shown in Fig. 4. 
From Fig. 5, the melt depth induced by the 0.7 J/cm2 LA is 
estimated to be ~65 nm by the simulation of the temperature 
profile using the heat transfer module of COMSOL 
Multiphysics. This explains the observation of two 
interfaces in the LA sample. The laser fluence of 0.7 J/cm2 
is high enough to cause the whole α-Ge layer and part of the 
Si1-yGey to melt. The Ge and Si atoms intermix at liquid 
phase and form a high Ge concentration Si1-xGex layer. The 
corresponding XTEM micrograph shows insignificant 
formation of dislocation at both Si1-xGex/Si1-yGey and Si1-

yGey/Si interfaces (Fig. 4). SIMS data of the LA sample is 
shown in Fig. 6 and the Ge concentration extracted from 
SIMS is revealed (inset). The Si1-xGex layer has graded Ge 
concentration; Ge fraction varies from ~60% to ~23%. The 
graded Si1-xGex layer might play a significant role to 
prevent the high strain induced between the high Ge 
fraction Si1-xGex layer and the Si substrate, impeding the 
large amount of dislocations formation. In addition, the 
non-melt Si substrate acts as an effective heat sink, thus the 
cooling rate is too fast for the defect formation during the 
annealing process. As a result, no significant dislocation is 
observed at the two interfaces in this sample. 

Fig. 7 shows the 532 nm Raman spectrum of the as-
deposited sample and the samples annealed by RTA and LA. 
For the as-deposited sample, the Ge-Ge peak is broad, 
indicating the amorphous phase of this layer. Comparing 
Fig. 7(b) with Fig. 7(c), the Si1-xGex/ Si1-yGey layer in the 
sample annealed by RTA has a higher average Ge 
concentration as compared to that annealed by LA. This can 
be shown by the higher Ge-Ge to Si-Ge peak intensity ratio 
for the sample that undergone RTA [5]. The reason is 
because 950 °C is insufficient to melt the Si1-yGey layer and 
hence it reduces the intermixing between the Ge and Si1-

yGey layer. 
4. SUMMARY 

High Ge fraction Si1-xGex virtual substrate fabricated by 
LA has been demonstrated. The graded Si1-xGex formed by 
LA helps to reduce the dislocation formation at the SiGe/Si 
interface. By depositing a thicker layer of α-Ge, it is 
possible to obtain a higher Ge fraction near the surface with 
low defect density by using LA technique. 
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Fig. 1. (a) Process flow used for fabricating high Ge 
concentration Si1-xGex virtual substrate. 
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Fig. 7. 532 nm Raman spectrum of (a) as-deposited sample; (b) sample went through RTA at 950oC 30s; and 
(c) sample went through LA at 0.7 J/cm2 for 10 pulses. The peaks from the Si1-yGey layer in the as-deposited 
sample (a) are too weak to be detected. 

Fig. 6. SIMS profiling shows the Si and 
Ge atoms depth profile in the sample 
annealed by LA at 0.7 J/cm2 for 10 pulses. 
The inset shows the Ge concentration 
extracted by SIMS. 

Fig. 2. (a) XTEM of a sample after the 
deposition of Si1-yGey on Si by UHV-
CVD. Fig. 2 (b) shows the high quality 
and defect free at the interface of Si1-
yGey/Si. 

Fig. 3. (a) XTEM of a sample after a 30 
nm α-Ge deposition and annealed at 
950oC, 30s by RTA. Fig. 3 (b) shows a 
high density defects formation at the 
interface of Si1-yGey/Si. 

Fig. 4. XTEM of a sample after a
deposition of 30 nm α-Ge and annealed by 
LA at 0.7 J/cm2, 10 pulses. No observable 
defect formed at the Si1-yGey/Si interface. 
The melt depth induced by LA is ~63 nm. 

Fig. 5. Simulation of the temperature 
profile using the heat transfer module of 
COMSOL Multiphysics. The melt depth 
induced by LA at 0.7 J/cm2 is estimated to 
be ~65 nm. 
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