Preparation of NiO/ZnO nanoheterojunction arrays and their optoelectric characteristics under UV light illumination

Wei-Chih Tsai^a, Shui-Jinn Wang^{a*}, Jia-Chuan Lin^b, Chih-Ren Tseng^a, Fu-Shou Tsai^a, and Wen-I Hsu^a

^aInstitute of Microelectronics, Department of Electrical Engineering,

National Cheng Kung University, Tainan 70101, Taiwan

^bDepartment of Electronics Engineering, St. John's University, Taipei 25135, Taiwan

*Phone: +886-6-2757575-62351, Fax: +886-6-2763882, E-mail: <u>sjwang@mail.ncku.edu.tw</u>

1. Introduction

Zinc oxide (ZnO) with a wide direct bandgap (3.4 eV) and a large excitation biding energy (60 meV) is a promising n-type semiconductor material for applications of light emitting diodes, sensors, and solar cells [1]. Recently, one-dimensional (1D) ZnO-nanowires (ZnO-NWs) have attracted considerable interests because of their unique physical properties and applications compared with bulk materials [2-3]. In addition, the surface active area of nanostructures based on ZnO-NWs is very large because of considerable quantities of NWs. It implies that the surface of ZnO-NWs can lead to a better efficiency of sensor and solar energy than thin films. Essentially, nickel oxide (NiO) is a p-type semiconductor with a bandgap of 3.7 eV [4] and widely used in sensors, fuel cells, and antiferromagnetic devices [5-6] due to their high stability and low material cost.

In this study, the use of a ZnO-NW-based heterojunction structure for applications of nano optoelectronic sensors was proposed. Nano heterojunctions (NHJs) were formed via e-beam deposition of p-type NiO onto the vertical-aligned ZnO-NWs grown by hydrothermal growth (HTG) method. The electrical properties of p-NiO/n-ZnO-NWs NHJs show a rectifying behavior of a p-n junction. The optoelectronic properties of the NiO/ZnO-NWs NHJs with different NiO thicknesses under UV light (366 nm, 6 mW/cm²) illumination, with good UV sensitivity were presented and discussed.

2. Experiments

The key fabrication processes were shown in Fig. 1. A 200-nm-thick aluminum-doped-zinc-oxide (AZO) film was sputtered on ITO-glass substrates to serve as a seed layer for the growth of ZnO-NWs by HTG (Fig. 1(a)). Then the samples were placed in a solution of 0.04 M zinc nitrate hexahydrate and Hexamethylenetetramine at 90°C for 1 hour (Fig. 1(b)). After HTG growth, NiO film was subsequently e-beam deposited onto the ZnO-NWs and then the p-NiO/n-ZnO-NWs NHJs were formed (Fig. 1(c)). Finally, an ohmic electrode with 100-nm-thick AZO film and 100-nm-thick grid Au electrodes were deposited on the surface of the p-NiO layer through e-gun evaporation (Fig. 1(d)).

3. Results and Discussion

The SEM images of the ZnO-NWs and p-NiO/n-ZnO-NWs prepared with different NiO thicknesses (50, 100, 200, and 300 nm) are shown in Fig. 2. According to Fig. 2(a), well-ordered and vertically-aligned ZnO-NWs

with controllable length (~1 μ m) were obtained. Figures 2(b)-(e) show the p-NiO/n-ZnO-NWs NHJs with different NiO thickness films which were e-beam deposited onto the ZnO-NWs. It can be observed that the tips of the ZnO-NWs were covered with NiO films and high-aspect-ratio p-NiO/n-ZnO-NWs NHJs with hemispheric-cap tips and matchstick-like were formed.

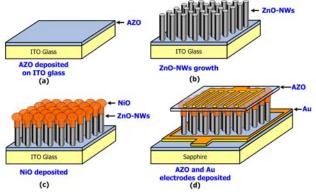


Fig. 1 The key fabrication processes of p-NiO/n-ZnO-NWs NHJs.

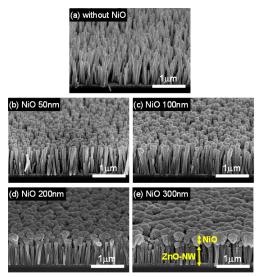


Fig. 2 The SEM images of the ZnO-NWs (a); the p-NiO/n-ZnO-NWs NHJs with different NiO thicknesses: (b) 50 nm, (c) 100 nm, (d) 200 nm, and (e) 300 nm.

Figure 3 shows the TEM image, the corresponding high-magnification TEM images and the SAED patterns of an individual p-NiO/n-ZnO-NW NHJ. The SAED patterns and the corresponding high-magnification TEM images show that the polycrystalline NiO and single crystalline ZnO-NW images were found from the left and the right region of the p-NiO/n-ZnO-NWs NHJ, respectively. The diameter of the ZnO-NWs was around 100 nm and clear stripes of lattice plane were observed at the

high-magnification TEM image. The inter plane distance of d-space was determined to be 0.26 Å, indicating the main crystalline phase of the wire should be ZnO [0001] phase, along the c-axis direction.

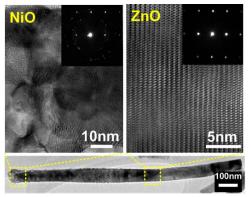


Fig. 3 The TEM image of an individual p-NiO/n-ZnO-NWs NHJ. The corresponding high-magnification TEM images and the SAED patterns of an individual p-NiO/n-ZnO-NW NHJ were shown in the top side figures.

The fabricated p-NiO/n-ZnO-NW NHJ arrays all exhibit a well-defined rectifying behavior in darkness as shown in figure 4. Note that the sample with 100-nm-thick NiO film exhibits the highest forward current. The dark J-V curve shows a diode-like behavior with a forward threshold voltage (V_{th}) of 5.9 V, a leakage current (J_r at -5V) of 0.64 $\mu A/cm^2,$ and a good rectification ratio (I_{forward}/I_{reverse} \mbox{ at 5 V}) of 89, respectively. The measured J-V characteristics under UV light (366 nm) illumination and the corresponding photoresponse curve of the prepared NHJ arrays were shown in figures 5 and 6, respectively. The sample with 100 nm-thick NiO film still yields the best photocurrent characteristics (an obvious photocurrent of 6 μ A/cm² at -5 V) among all the prepared samples, revealing an increase in the diode current of about 8×. Schematic energy band diagrams of the NiO/ZnO-NWs NHJ are also depicted in the inset of figure 4 and 5 showing the carrier transport processes under thermal equilibrium and reverse bias, respectively. As shown in Fig. 6, the fast photoresponse times (rise time ~4 s and fall time ~13 s) indicate that the optoelectronic properties of the p-NiO/n-ZnO-NW NHJ arrays are quite good. In addition, the reversible cycles of the photoresponse curve indicates a stable and repeatable operation of photo detecting and optical sensing.

4. Conclusion

In summary, preparation of p-NiO/n-Zn-NWs NHJs using HTG method for use in UV photodetectors has been demonstrated in this study. The 1D p-NiO/n-Zn-NWs NHJ arrays showed a rectifying behavior in dark and evident photonic sensitivity under UV light illumination. The optoelectronic characteristics demonstrate that the 1D NiO/Zn-NWs NHJs have fairly good sensitivities and fast responses to UV light with an increase in the photocurrent of about 8×. It is expected that the present NHJs based on ZnO-NWs would provide an effective and simple way for future developments of optoelectronic devices.

Acknowledgments

This work was supported by the National Science Council (NSC) of Taiwan, under Contract No. NSC

96-2221-E-006-285-MY3, NSC 97-2221-E-129-016. The authors would like to thank the Advanced Optoelectronic Technology Center, the National Nano Device Laboratories, and the Center for Micro/Nano Science and Technology, National Cheng Kung University, Taiwan, for equipment access and technical support.

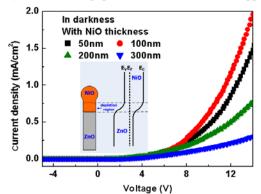


Fig. 4 The *J-V* curves of the p-NiO/n-ZnO-NW NHJ arrays with different thickness of NiO in darkness.

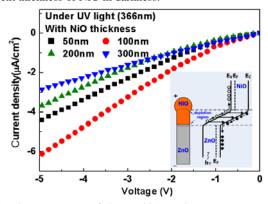


Fig. 5 The *J-V* curves of the p-NiO/n-ZnO-NW NHJ arrays with different thickness of NiO under UV light (366 nm).

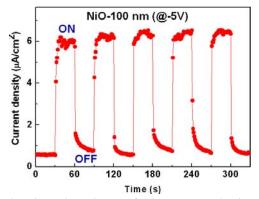


Fig. 6 The time dependence of photocurrent density of the p-NiO/n-ZnO-NW NHJ arrays under UV light (366 nm) with 100 nm-NiO film at -5V.

References

- Y. W. Heo, D. P. Nortona, L.C. Tiena, Y. Kwona, B. S. Kangb, F. Renb, S. J. Peartona, and J. R. LaRoche, *Mater. Sci. Eng.* 47, 1 (2004).
- [2] Z. L. Wang, and J. Song, Science 312, 242 (2006).
- [3] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, *Science* **292**, 1897 (2001).
- [4] D. Adler, J. Feinleib, *Physical Review B* 2, 3112 (1970).
- [5] T. S. Mintz, Y. V. Bhargava, S. A. Thorne, R. Chopdekar, V. Radmilovic, Y. Suzuki, and T. M. Devine, *Electrochem. Solid-State Lett.* 8, D26 (2005).
- [6] F. Li, H.Y. Chen, C.M. Wang, and K.A. Hu, J. Electroanul. Chem. 531, 53 (2002).