High-performance inversion-mode III-V MOSFETs enabled by atomic-layer-deposited high-k dielectrics (invited)

Y.Q. Wu, O. Koybasi, and P.D. Ye*

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 * Tel: 765-494-7611, Fax: 765-494-0676, E-mail: <u>yep@purdue.edu</u>

1. Introduction

Using In-rich InGaAs surface channel. as high-performance inversion-type enhancement-mode high-k/III-V NMOSFETs have been demonstrated.¹⁻⁶ Although on-state performance, such as drain saturation current I_{dss} and peak transconductance g_m show promise, the off-state performance or subthreshold characteristics need to be seriously evaluated for potential applications in digital circuits. In this paper, we systematically study I_{dss} , g_m , threshold voltage (V_T), I_{on}/I_{off} ratio, sub-threshold swing (S.S.), the drain induced barrier lowing (DIBL), gate delay and energy delay product normalized to device width of the fabricated Al2O3/In0.75Ga0.25As MOSFETs, as function of the gate length from 110 nm to 250 nm.

2. Experiments and Results

Fig. 1 shows the schematic cross section of the device structure. The electron beam lithographically fabricated MOSFETs have 110 to 250 nm nominal channel lengths, L_{ch} , defined by the source-drain implant separation. The channel width of all measured devices is 5.0 µm. The detailed device fabrication flow is described in Ref. 7. The device process is not self-aligned. A well-behaved I-V characteristic of a 150 nm-gate-length is demonstrated in Fig. 2 and Fig. 3 with high drain current of 0.92 mA/µm and transconductance of 0.7 mS/µm for a surface channel III-V MOSFET.

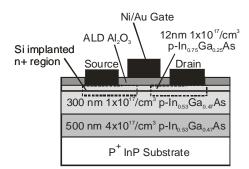


Fig.1 Schematic cross section of InGaAs NMOSFET with ALD Al₂O₃ gate dielectric.

Fig. 4 shows I_d and I_s in log scale vs. V_{gs} as a function of V_{ds} of the same device. It is clear that I_{sub} from the reverse-biased pn-junction leakage current determines the leakage floor and I_d at $V_{gs} < 0$ V at high V_{ds} . Junction leakage is significantly reduced by reducing the implanted source/drain activation temperature from 750 °C to 650 °C without sacrificing any on-state performance [1,2,7]. The gate leakage current through 5 nm Al₂O₃ is

extremely low, at 10 pA/ μ m or 10⁻³A/cm² level, about eight orders of magnitude lower than the drain current. Fig. 5 shows V_T reduction to lower voltage for shorter gate-length devices. The V_T is determined by the linear extrapolation method at V_{ds} =0.05V.

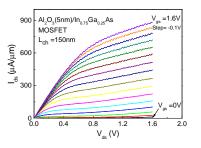


Fig.2 Drain current versus drain voltage at different gate biases for a 150 nm-gate-length MOSFET with a 5 nm ALD Al_2O_3 gate dielectric.

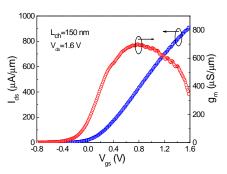


Fig.3 I_{ds} and g_m versus V_{gs} at V_{ds} =1.6V for the same In_{0.75}Ga_{0.25}As MOSFET with L_{ch} =150 nm.

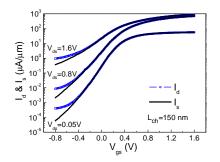


Fig.4 I_d and I_s at three different V_{ds} of the same In_{0.75}Ga_{0.25}As MOSFET with L_{ch} =150nm.

Fig. 6 shows the subthreshold characteristics of drain current I_d vs V_{gs} for 4 representative devices with 110, 130, 160 and 200 nm gate lengths at V_{ds} =1.6 V and

 V_{ds} =0.05 V. SS and DIBL are both derived from the semilog transfer characteristics of I_d at V_{ds} =0.05V and V_{ds} =1.6V. Large SS and DIBL are due to dominant donor traps at high-k/InGaAs interface with Dit of 2×10^{12} /cm²-eV at CBM and even higher in the bandgap.⁸ Table 1 summarizes the I_{dss} , g_m , SS, DIBL, I_{on}/I_{off} as functions of L_{ch} obtained from I_d . I_{on}/I_{off} is chosen as I_{on} $(V_{ds}=1.6V, V_{gs}=1.2V)/I_{off} (V_{ds}=1.6V, V_{gs}=-0.6V)$ or I_{on} $(V_{ds}=0.05V, V_{gs}=1.2V)/I_{off} (V_{ds}=0.05V, V_{gs}=-0.6V)$, which roughly agrees with $1\mu A/\mu m$ metric for $V_T (V_T \approx 0$ for 200 nm MOSFET at V_{ds} =1.6V) and 2/3 of gate swing above V_T to obtain I_{on} and 1/3 of the gate sweep below V_T to obtain I_{off} . It can be seen that SS and DIBL increase and I_{on}/I_{off} decreases with decreasing L_{ch} . The values start to deteriorate dramatically at $L_{ch}=130$ nm or shorter, indicating that severe short-channel effect occurs. Gate delay and energy gate delay product per width are also reported in Table 1. The numbers with gate length shorter than 130 nm are missing since the device is not well behaved. I_{on} values for $L_{ch} \leq 130$ nm have also not too much meaning since the device does not turn off well.

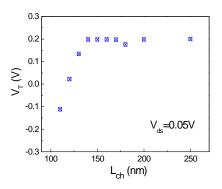


Fig.5 V_T vs. different L_{ch} from 110 nm to 250 nm. A clear roll-over effect is observed at $L_{ch} \leq 130$ nm.

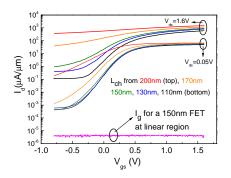


Fig.6 Subthreshold characteristics of 4 devices at V_{ds} =0.05V and V_{ds} =1.6V.

3. Conclusion

We have demonstrated deep submicron In_{0.75}Ga_{0.25}As MOSFETs and systematically studied their on-state and off-state characteristics. Severe short-channel effects are observed at implanted surface channel devices with $L_{ch} \leq$ 130 nm. Much more work on interface and junction, such

as shallow junction engineering and halo implantation, are needed to make this novel device structure a competitive technology for deeply scaled CMOS technology nodes.

Table 1 Major device parameters of In0.75Ga0.25As MOSFETs

L _{ah} (nm)	I _{on} (μΑγμm) (V _{ds} =1.6V)	9 _m (µS/µm) (V _{ds} =1.6V)	SS (mV/dec) (V _{ds} =0.05V)	SS (mV/dec) (V _{ds} =1.6V)	DIBL (mV/V)	I _{on} /I _{off} (V _{ds} =0.05V) V _{gs} =1.2V/ V _{gs} =0.6V	l _{on} /l _{off} (V _{ds} =1.6V) V _{gs} =1.2V/ V _{gs} =0.6V	Gate Delay (ps) (V _{ds} = 1.6V)	Energy Delay Product per Width (Js/µm) (V _{ds} =1.6V)
110	1485	750	430			150			
120	1333	760	291			1.0x10 ³			
130	1160	760	222	1164	837	1.7x104	18	2.0	7.1x10 ⁻²⁶
140	1002	752	178	507	401	6.2x10 ⁴	139	2.4	9.5x10 ⁻²⁶
150	925	700	169	355	283	8.3x10 ⁴	526	2.8	1.2x10 ⁻²⁶
160	802	645	168	284	245	6.4x10 ⁴	545	3.5	1.6x10 ⁻²⁶
170	800	632	167	250	210	7.0x10 ⁴	605	3.7	1.8x10 ⁻²⁶
180	745	608	155	231	164	5.8x10 ⁴	610	4.2	2.1x10 ⁻²⁶
200	740	584	154	213	157	8.7x10 ⁴	659	4.7	2.6x10 ⁻²⁶
250	687	510	153	201	137	8.6x10 ⁴	903	6.4	4.4x10 ⁻²⁶

Acknowledgment

The work is supported by National Science Foundation and SRC FCRP MSD Center. The authors thank D.A. Antoniadis for the valuable discussions.

References

[1] Y. Xuan et al., *IEEE Electron Dev. Lett.* **29**, 294 (2008).

[2] Y. Xuan et al., *IEDM Tech. Dig.*, 371-374, Dec. 2008.

[3] N. Goel et al., *IEDM Tech. Dig.*, 363-366, Dec. 2008.

[4] Y. Sun et al., IEDM Tech. Dig., 367-370, Dec. 2008.

[5] J. Lin et al., *IEDM Tech. Dig.*, 401-404, Dec. 2008.

[6] T.D. Lin et al., Appl. Phys. Lett. 93, 033516 (2008).

[7] Y.Q. Wu et al., *IEEE Electron Dev. Lett.* **30**, *July* 2009.

[8] D.Varghese et al., *IEDM Tech. Dig.*, 379-382, Dec. 2008.