In_{0.49}GaP/Al_{0.45}GaAs/In_{0.22}GaAs/Al_{0.22}GaAs Barrier Enhancement-mode Pseudomorphic High Electron Mobility Transistor with an Enhanced Gate Forward Turn-on Voltage

Jeongmin Sung, Jongwook Kim, Kyoungchul Jang and Kwang-Seok Seo

Seoul National Univ., School Of Electrical Engineering and Computer Science 599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea Phone: +82-2-877-0298, E-mail: inatofw@snu.ac.kr

1. Introduction

Enhancement-mode pseudomorphic High Electron Mobility Transistors (E-pHEMTs) were thought to be promising for wireless handset applications because of high efficiency, low voltage single supply operation and no need for drain switch [1]. But E-pHEMTs had a poor threshold voltage (V_{TH}) controllability, a reliability issue and a low drain current density.

The low drain current density of E-pHEMTs is problematic in two aspects. The first is in a fabrication cost. E-pHEMTs occupy a larger chip size than depletion-mode pHEMTs (D-pHEMTs) or HBTs to meet current density requirements for applications. The second is in a gate Schottky reliability and its operating gate current. E-pHEMTs with an inferior drain current density need a higher V_{GS} to meet drain current requirements and increasing the V_{GS} accompanies a higher gate current. Operating current densities of GaAs Schottky diodes were thought to impact the long term reliability of the diodes [2].

Thus there have been many efforts to decrease the gate current and to increase the operating gate voltage. Glass *et al.* adopted a wide band-gap barrier layer for its large conduction band discontinuity (ΔE_C) [3]. Superlattice-insulated -gate field effect transistors (SIGFETs) adopted alternating thin layers of wide band-gap layer and narrow band-gap layer [4]. The superlattice suppressed gate current and increased applicable gate bias range. Palacios *et al.* proposed an AlGaN/GaN HEMT with a GaN spacer between GaN channel and AlGaN barrier which reduced the alloy scattering of electrons with AlGaN barrier [5].

This paper presents a new layer structure for E-pHEMT adopting a narrow band-gap layer as a part of barrier layers, $In_{0.49}GaP/Al_{0.45}GaAs/In_{0.22}GaAs/Al_{0.22}GaAs$. The barrier layer contained the narrow band-gap material of $In_{0.22}GaAs$. The impacts of the $In_{0.22}GaAs$ layer on gate current and $I_{DS.MAX}$ were examined.

2. Layer structure and process

Fig. 1 shows layer structures employed in this study. Type I layer structure was a newly devised one and adopted $In_{0.49}GaP/Al_{0.45}GaAs/In_{0.22}GaAs/Al_{0.22}GaAs$ barrier layer. Type II is the same as the type I layer structure except for its barrier layers. Type II layer structure adopted $In_{0.49}GaP$ / $Al_{0.45}GaAs/Al_{0.22}GaAs$ barrier layer for comparison [6].

For the type I structure the narrow band-gap layer of $In_{0.22}GaAs$ is inserted between the wide band-gap layer of

Layer	Material	Thickness(Å)
Cap	n+ GaAs	400
Barrier	In _{0.49} GaP	30
	Al _{0.45} GaAs	60
	In _{0.22} GaAs for type I (Al _{0.22} GaAs for type II)	30
	δ-doping	
	Al _{0.22} GaAs	30
Channel	In _{0.22} GaAs	110
Barrier	Al _{0.22} GaAs	40
	δ-doping	
	Al _{0.22} GaAs	710
Buffer & Substrate		
Fig. 1. The lower structures of E pHEMTs		

Fig. 1. The layer structures of E-pHEMTs

Al_{0.45}GaAs and the spacer layer of Al_{0.22}GaAs. Its impacts can be understood in three ways. The first is electron confinement in a potential well. Fig. 2(a) shows that the In_{0.22}GaAs barrier layer forms a potential well and some of electrons in the barrier layers are confined in the potential well at V_{GS} of 1.1V. Forward biased gates attract the electrons in the potential well and the electrons face $\Delta E_{\rm C}$ between Al_{0.45}GaAs and In_{0.22}GaAs and the ΔE_C is 0.51 eV [7][8]. In contrast the type II has the barrier layers of Al_{0.45}GaAs/Al_{0.22}GaAs and ΔE_C is 0.16 eV. Electron confinement in the In_{0.22}GaAs potential well and large $\Delta E_{\rm C}$ between Al_{0.45}GaAs and In_{0.22}GaAs might hinder the vertical flow of electrons from channel to gate for the type I layer structure. The second is conduction band enhancement of $Al_{0.45}$ GaAs for type I layer structure. In fig. 2(a) the Al_{0.45}GaAs of type I structure at Al_{0.45}GaAs/In_{0.22}GaAs interface had 0.035 eV higher E_C than that of type II structure at Al_{0.45}GaAs/Al_{0.22}GaAs interface. The enhancement of E_C is attributed to lower electron density in the Al_{0.45}GaAs layers. The third is drainage of barrier electrons to drain electrode. Electrons in the barrier are attracted to gate and form gate current. Some of these electrons can be swept to a positively biased drain. The In_{0.22}GaAs layer is directly connected to drain and this layer can promote the drainage of electrons to drain. This might decrease gate current.

The two layers grown in molecular beam epitaxy (MBE) had the electron mobility of 5000 cm²/V·s and the channel carrier density of 1.2×10^{12} cm⁻². After MESA isolation using a phosphoric based wet etchant, the ohmic metal of Ni/Ge/Au/Ni/Ag/Au(100/450/1000/100/1000/1000 Å) was deposited and annealed at 440°C. 0.5 um T-gates were defined using electron-beam lithography. Gate recess

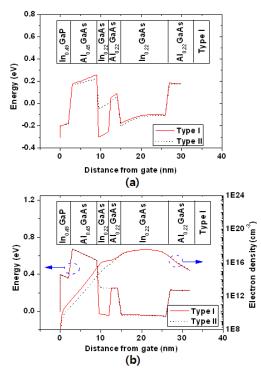


Fig.2. (a) The simulated conduction band diagram at the V_{GS} of 1.1 V, (b) the simulated conduction band diagram and the electron density at the V_{GS} of 0.4 V

was done using a selective phosphoric acid etchant $(H_3PO_4:H_2O_2:H_2O=1:1:25)$ for 25 s. Pt/Ti/Pt/Au was deposited as a gate metal. And the final device was fully passivated using Si₃N₄ layer.

3. Measurement and discussions

The measured gate I-V curves in fig. 3 were in accordance with the simulations. At V_{GS} of 1.1 V the gate current density of the type I was lower than that of the type II by an order of magnitude. Gate forward turn-on voltage (V_{G.ON}) defined at the I_G of 1 mA/mm was 1.4 V for the type I and 1.1 V for the type II. From inset of the fig. 3 it can be noticed that the type I had a higher gate current at V_{GS} below 0.7 V. For this gate bias thermionic emission is not a dominant conduction mechanism for gate current and tunneling of electrons between the gate and the In_{0.22}GaAs barrier layer might increase the gate current density. Fig. 2(b) shows the conduction band diagrams and the electron densities at V_{GS} of 0.4 V. Both structures had similar conduction band edges in the $Al_{0.45}$ GaAs layer. But the type I had a higher electron density in the Al_{0.45}GaAs layer than the type II for tunneling of electrons. Off-state breakdown voltage (BV_{DG}) defined at the I_G of -1 mA/mm was about -7 V for both structures. They had rather small BV_{DG} values for single recessed gates.

Fig. 4 shows the transfer-curves and the measured maximum available gains (MAG) at V_{DS} of 1.5 V. They had the V_{TH} of 0.3 V at I_{DS} of 1 mA/mm. $I_{DS.MAX}$ was defined at the V_{GS} of $V_{G.ON}$ and the type I had a higher $I_{DS.MAX}$ for its enhanced $V_{G.ON}$. The $I_{DS.MAX}$ was 390 mA/mm for the type I and 275 mA/mm for the type II. $G_{M.MAX}$ was 450 mS/mm for the type I and 460 mS/mm for type II. The type

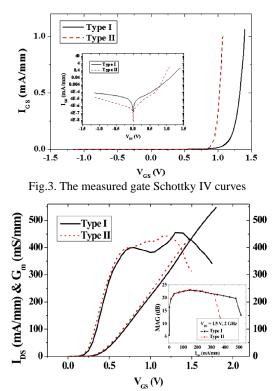


Fig.4. The measured transfer curves at the V_{DS} of 1.5 V and the MAG at the frequency of 2 GHz and the V_{DS} of 1.5 V

I didn't show a G_M degradation up to V_{GS} of 1.4 V while the type II showed a severe degradation at V_{GS} over 1.2. The MAG was measured at the frequency of 2 GHz and the V_{DS} of 1.5 V. The type I had a flat MAG for a wider range of I_{DS} than the type II.

4. Conclusions

A new E-pHEMT layer structure adopting the narrow band-gap layer as a barrier layer is reported. The barrier layer of $In_{0.49}GaP/Al_{0.45}GaAs/In_{0.22}GaAs/Al_{0.22}GaAs$ was more effective in enhancing the $V_{G.ON}$ than the barrier layer of $In_{0.49}GaP/Al_{0.45}GaAs/Al_{0.22}GaAs$. A larger V_{GS} bias could be applied to the $In_{0.49}GaP/Al_{0.45}GaAs/In_{0.22}GaAs/Al_{0.22}GaAs$ $Al_{0.22}GaAs$ barrier E-pHEMT for its higher $V_{G.ON}$. The heterostructural concept of this work can be useful not only for the E-pHEMT but also other devices that need smaller gate leakage current.

Acknowledgements

This work was supported by the National Program for Tera Level Nano Devices of the Ministry of Education, Science and Technology as one of the 21st Century Frontier programs.

References

- [1] Wu D. W., et al.: IEEE MTT-S Dig., (1997) 1318
- [2] Y. Chou, et al.: in IEEE GaAs Dig., (2004) 123
- [3] E. Glass, et al.: in IEEE RFIC Sym. Dig., (1999) 135
- [4] J. Abrokwah, et al.: J. Vac. Sci. Tech. B4(2), (1985) 615
- [5] T. Palacios, et al.: Appl. Phys. Lett. 89, (2006) 073508
- [6] K. Jang, et al.: Jpn. J. Appl. Phys., 45(4B), (2006) 3355
- [7] S. Adachi, et al.: IEE INSPEC (1993)
- [8] P. Bhattacharya, et al.: IEE INSPEC (1993)