## Gate induced Cross-over between Fabry Perot and Quantum Dot Behavior in a Single-Walled Carbon Nanotube Hole-Transistor with Double Gate Structure

**T. Kamimura**<sup>\*, 1, 2, 3</sup>, and K. Matsumoto<sup>1, 3, 4</sup> <sup>1</sup>AIST, 1-1-1 Umezono Tsukuba, Ibaraki, 305-8568, Japan <sup>2</sup>JSPS, <sup>3</sup>CREST-JST, <sup>4</sup>Osaka Univ. ISIR Tel: +81-29-861-5516, \*E-mail: t.kamimura@aist.go.jp

We have succeeded in fabricating the double gated SWNT quantum transistor operated by Fabry Perot and quantum dot behavior. The two behaviors are controlled by the control gate and observed by sweep gate.

The schematic sample structure is shown in Fig. 1. The four electrodes are fabricated on the one SWNT. SWNT is completely purified. The distances between the electrodes, are  $L_1 = 69.4$  nm,  $L_2 = 90.3$  nm and  $L_3 = 119$  nm, respectively. Moreover, large voltage up to 6 V is applied at  $L_2$  and cut the SWNT. Thus,  $L_1$  is used as the channel of the SWNT hole-transistor with side gate as shown in Fig. 1. The SWNT hole-transistor also has back gate at the back side of the substrate. The side gate  $V_{SG}$  and the back gate  $V_{BG}$ are used for the control gate and sweep gate, respectively.

Fig. 2(a) - (d). show the  $d^2I_D/dV_D^2$  mappings as a function of  $V_D$  and  $V_{BG}$ , where  $I_D$  is drain current and  $V_D$  is drain voltage. When  $V_{SG} = 0$  V is applied, the device shows Fabry Perot quantum interference pattern at around  $V_{BG} = -19$  V and Coulomb diamond characteristic at higher  $V_{BG}$  than  $V_{BG} = -17$  V as shown in Fig. 2(a) and Fig. 2(b). Thus, the cross-over between Fabry Perot and quantum dot behavior is observed as shown in Fig. 2(a). When  $V_{SG} = -25$  V is applied, the device shows Fabry Perot quantum interference pattern at around  $V_{BG} = -14$  V and Coulomb diamond characteristic at higher  $V_{BG}$  than  $V_{BG}$  -12 V as shown in Fig. 2(a) and Fig. 2(b). Fig. 2(e) and Fig. 2(f) are the enlargement characteristics shown in the square region by dot line in the Fig. 2(a) and Fig. 2(c), respectively. At the cross-point of the two dot lines, which are corresponding to the quantum levels in the SWNT,  $d^2I_D/dV_D^2$  show high value pattern, which are called Fabry Perot quantum interference pattern. The shift of the  $V_{BG}$  region showing the Fabry Perot quantum interference pattern and Coulomb diamond characteristic by  $V_{SG}$  is about 5 V.

diamond characteristic by  $V_{SG}$  is about 5 V. Fig. 3 shows the  $d^2I_D/dV_D^2$  mapping as a function of  $V_{SG}$  and  $V_{BG}$ , in which  $V_D$  is the constant of 1 mV. The white regions are corresponding to the Coulomb oscillation peaks and Fabry Perot quantum interference pattern, the slope  $V_{SG}/V_{BG}$  of which is 0.2. Therefore, the modulation of the potential energy in the SWNT by  $V_{SG} = -25$  V is corresponding to the modulation of the potential energy in the SWNT by  $V_{BG} = -5$  V. This estimation is in agreement with the  $d^2I_D/dV_D^2$  mapping as a function of  $V_D$  and  $V_{BG}$  as shown in Fig. 2(a) – (d).

We have succeeded in controlling cross-over between Fabry Perot and quantum dot behavior in a single walled carbon nanotube hole-transistor by double gate. The ratio of the modulation of the potential energy in the SWNT by  $V_{SG}$  to that by  $V_{BG}$  is 0.2.

[1] Nature 411, 665 (2001)

[2] Jap. J. Appl. Phys 48, 015005 (2009).

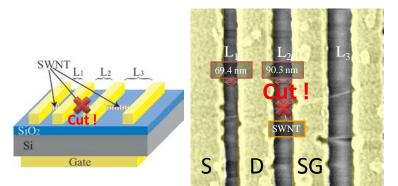



Fig. 1 Schematic sample structure and SEM image around channel.

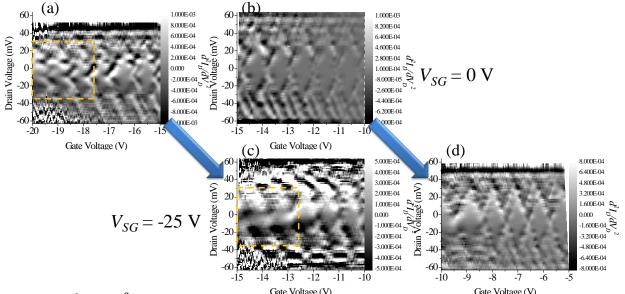
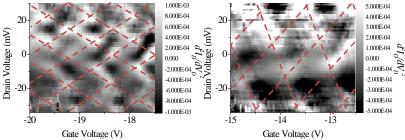




Fig. 2 the  $d^2I_D/dV_D^2$  mappings as a function of  $V_D$  and  $V_{BG}$ , where applied  $V_D$  is ranged from -63 mV to 64 mV. (a) the  $d^2I_D/dV_D^2$  mapping where  $V_{SG} = 0$  V and  $V_{BG}$  is ranged from -15 V to -20 V. (b) the  $d^2I_D/dV_D^2$  mapping where  $V_{SG} = 0$  V and  $V_{BG}$  is ranged from -10 V to -15 V (c) the  $d^2I_D/dV_D^2$  mapping where  $V_{SG} = 0$  V and  $V_{BG}$  is ranged from -10 V to -15 V. (d) the  $d^2I_D/dV_D^2$  mapping where  $V_{SG} = 0$  V to -10 V.



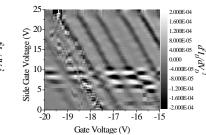



Fig. 2(e), (f) the enlargement characteristics shown in the dot square region in the Fig. 2(a) and Fig. 2(c), respectively.

Fig. 3 the  $d^2 I_D / dV_D^2$  mapping as a function of  $V_{SG}$  and  $V_{BG}$ , in which  $V_D$  is the constant of 1 mV.