Surface Modification of SnO₂ Electrodes for Highly Efficient Dye Sensitized Solar Cells

Fumihiko Hirose, Hiroki Yoshida, Masaya Shikaku, Takahiko Suzuki and Yuzuru Narita

Graduate School of Science and Engineering, Yamagata University 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan Phone: +81-238-26-3767 E-mail: fhirose @yz.yamagata-u.ac.jp

1. Introduction

Ever since Grätzel et al. reported highly efficient, low-cost dye-sensitized solar cells (DSCs) using cis-di(thiocyanato)bis(2,2'-bipyridyl-4,4"-dicarboxylate)rut heniumu(II) (N719) with a photovoltaic efficiency of 11% [1], many researchers have tried to reproduce the solar cell. Many papers have been published regarding TiO₂ fabrication to achieve larger surface areas for dve adsorption, in which nanoparticle TiO₂ films [1-3] have been reported. As these surfaces with extremely large surface areas allowed for highly efficient power generation with a high density adsorption of the sensitizing dye, most researchers have been trying to achieve high density adsorption as much as possible. In a previous paper [see Ref. 4], however, we reported surface modification of the TiO₂ surface by a UV treatment is also effective in improving power generation, where the dye adsorption was enhanced with intentional generation of adsorption site (TiOH)[4].

In previous papers of Refs. 4 and 5, we observed the adsorption states of N719-sensitizing dye on anatase TiO₂ surfaces with a variety of adsorption densities using infrared absorption spectroscopy (IRAS) with a multiple-internal-reflection (MIR) geometry. It was found that chemisorbed and physisorbed dyes coexisted on the dye-adsorbed surface. We found that the ratio of the chemisorbed and the physisorbed dye densities was dependent on the exposure of the TiO₂ surface to N719 dye, and overexposure generated a physisorbed state. Test fabrications of DSCs with various N719 exposures suggested that the degeneration of the physisorbed N719 is effective in enhancing power generation. We discussed how to promote the power conversion efficiency of DSCs without interference of the physisorbed N719 dye in the photovoltaic operation.

As we mentioned above, we consider that there are rooms for improvement not only in the preparation of TiO_2 nanoparticle films, but also in modification of their interfaces. In this paper, we clearly show an effective measure for highly efficient DSCs by inserting chemical vapor deposition (CVD) grown TiO_2 between TiO_2 nanoparticle and SnO_2 transparent conducting films. We discuss how the interface modification with the CVD grown film works for the improvement.

2. Experimental

We fabricated DSCs by inserting interfacial layers of TiO_2 between nanoparticle and SnO_2 films. The schematic

is shown in Fig.1. The TiO₂ films were deposited on SnO₂-coated glass plates by CVD [6]. Nanoparticle TiO₂ films with pores with a thickness of 15 µm with an area of 0.5×0.5 cm² were formed on the CVD grown TiO₂ by a screen printing method. The TiO₂ paste was made from TiO₂ powder manufactured by Ishihara Sangyo (ST-01), deionized water, acetic acid solution with a pH of 3.5, and polyethylene glycol. The TiO₂ films were baked in air at a temperature of 500°C for 1 h. The N719 adsorption was performed by immersing the TiO₂ particle surface in N719 solution. The redox electrolyte was 0.1M LiI, 0.05M I_2 , 0.6M dimethyl propyl imidazolium iodide and 0.5M tert-butylpyridine in dried acetonitorile. The photovoltaic properties of the DSCs were measured using an I-V measurement system and a 5000 K-300 W-xenon lamp was used as a light source. The light intensity at the DSC surface was set at 80 mW/cm² with a standard Si solar cell manufactured by Peccell Technologies.

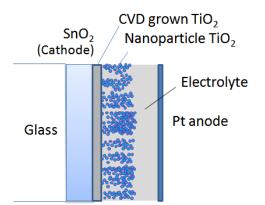


Fig. 1 Schematic of dye-sensitized solar cell with a CVD grown TiO_2 film.

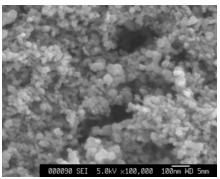


Fig. 2 SEM micrograph of nanoparticle TiO_2 with pores.

3. Results and Discussion

A typical current density-voltage characterisitics obtaiend from DSCs with and without the TiO₂ interfacial layer is shown in Fig. 3. The short circuit current density (Jsc), open circuit voltage (Voc) and power conversion efficiency (η) of the DSCs are summarized in Table.1. It is clear that the CVD grown TiO₂ interfacial layer enhanced the power conversion efficiency by 0.4 %. The short circuit current density was also improved by 0.4mA/cm². To discuss the mechanism of the TiO₂ interfacial layer, we have analyzed series resistance (Rs) and shunt resistance (Rsh) with the characteristics. It was found that Rsh was improved from 4 to 40 k Ω cm² by inserting the TiO₂ interfacial layer, although Rs remained unchanged. This fact strongly suggests that the TiO₂ interfacial layer prevented the recombination of I_3^+ ion and electron on the SnO₂ surface.

To discuss why the prevention of the recombination enhances Jsc, we constructed a simplified nanoporous TiO_2 electrode model as shown in Fig. 4. This illustrates flows of I_3^- and I^- ions between the nanoporous TiO_2 electrodes. When the sun light induces to N719 dye, electron and hole are generated. Holes oxidize I^- ions to generate I_3^- ions. If I_3^- ions flow to the Pt anode, power generation takes place. However, if electrons and I_3^- ions are recombined with each other at the surface of SnO_2 , a reverse flow of the I_3^- ion might appear. This reverse flow would deteriorate the short circuit current density.

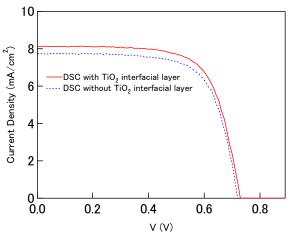


Fig. 3 I-V characteristics obtained from DSCs with and without a TiO_2 interfacial layer.

Table 1 Summery of electrical characterization of DSCs with and without a TiO_2 interfacial layer.

Sample	Jsc (mA/cm ²)	Voc (V)	η (%)
With TiO ₂ interfa- cial layer	8.13	0.72	4.8
No TiO_2 interfacial layer	7.73	0.71	5.2

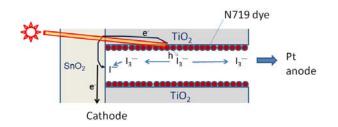


Fig. 4 Schematic illustrating I₃⁻ and I⁻ ion flows between porous nanoparticle TiO₂ electrodes.

We have obtained a result supporting the above explanation; variation of Jsc as a function of thickness of the porous TiO_2 nanoparticle electrode. The result is shown in Fig.5. The TiO_2 interfacial layer is effective to suppress the variation of Jsc. If the porous TiO_2 nanoparticle electrode becomes thinner without the interfacial layer, the negative flow of the I_3^- ion to SnO_2 may occur, where the impact of the recombination of electrons and I_3^- ion on Jsc must be larger. The suppression of the variation suggests that the interfacial layer plays a role to limit the consumption of $I_3^$ ions at the SnO_2 surface, where it might enhance the flow of I_3^- ions toward the Pt anode and Jsc might be improved.

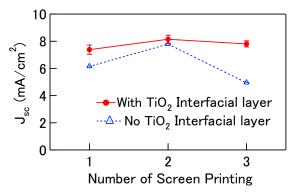


Fig. 4 Variation of short circuit current density as a fuction of thickness of the porous TiO_2 nanoparticle electrode. The thicknesses at the screen-printing numbers of 1,2 and 3, are 7.4,15.5 and 23.0 μ m, respectively.

3. Conclusions

We successfully demonstrated that the interface modification of SnO_2 electrode with CVD grown TiO_2 promotes the power generation in DSCs. The CVD grown TiO_2 interfacial layer prevents the recombination of electron and I_3 ion on SnO_2 surface.

References

- [1] B. O'Regan, M. Grätzel, Nature (London) 353(1991) 737.
- [2] J. Jiu, S. Isoda, M. Adachi, F. Wang, J. Photochemistry and Photobiology A, 189(2007) 314.
- [3] T.V. Nguyen, H.C. Lee, O. Yang, Solar Energy Mat. & Solar Cells 90 (2006) 967.
- [4] F. Hirose, K. Kuribayashi, T. Suzuki, Y. Narita, Y. Kimura, M. Niwano, *Electrochemical and Solid State Letters* 11 (2008) A109.
- [5] In preparation for publication.
- [6]F. Hirose, M. Ito, K. Kurita, Jpn. J. Appl. Phys. 47(2008)5619.