Anomalous Hot-Carrier-Induced Saturation Drain Current Degradation in DEMOS Transistors

Jone F. Chen¹, Kaung-Wan Lin¹, Shiang-Yu Chen¹, Kuo-Ming Wu², J. R. Shih², and Kenneth Wu²

¹Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan

Phone: +886-6-2757575, fax: +886-6-2345482, E-mail: jfchen@mail.ncku.edu.tw

²Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan

1. Introduction

High-voltage drain-extended MOS (DEMOS) devices have been intensively used for the applications in flat panel display drivers and smart-power management [1]-[2]. One major reliability concern in DEMOS transistors is hotcarrier reliability because the devices are often operated under high drain voltage (V_d) and high gate voltage (V_g). Since hot-carrier-induced damage in most of the DEMOS devices is located in the drift region, on-resistance (R_{on}) degradation of the device is usually much greater than saturation drain current (I_{dsat}) degradation [3].

In this paper, the mechanism responsible for hotcarrier-induced device degradation in a 32V n-type DEMOS device is discussed. In addition, an unexpected high I_{dsat} degradation (close to R_{on} degradation) is observed in this 32V DEMOS device. According to data and simulation results, the mechanism responsible for such an anomalous I_{dsat} degradation is suggested.

2. Experiments

Fig. 1 shows the schematic cross section of the DEMOS transistor used in this work. The channel region (L_{ch}), accumulation region (L_{acc}) , and gate overlapped shallow trench isolation (STI) region (L_s) are depicted. This device is fabricated with a 0.18µm CMOS process. The operational voltage of the device is 32V for both V_d and V_g . DC stressing with various V_g and $V_d = 35.2V$ at room temperature is performed with the source and bulk connected to the ground. To extract stress-induced interface state formation (ΔN_{it}), charge pumping current (I_{cp}) is measured. The stress tests are interrupted periodically to measure the degradation of device parameters (including R_{on} , I_{dsat} , maximum transconductance G_{mmax} , threshold voltage V_T) and I_{cp} . $R_{on} (= V_d/I_d)$ is measured at $V_d = 0.1V$ and $V_g = 32V$. I_{dsat} is monitored when $V_d = V_g = 32V$. G_{mmax} and V_T are extracted at $V_d = 0.1V$. TCAD simulation results including impact ionization rate and current flow are analyzed to examine the mechanism responsible for device degradation as well as the unexpected high I_{dsat} degradation.

3. Results and Discussion

To evaluate the effect of V_g on device degradation, devices are stressed under various V_g (ranging from 2V to 32V) at $V_d = 35.2V$. Stress results reveal that the V_g that produces the most R_{on} degradation is $V_g = 32V$. Thus, the following analysis is focused on the device stressed under $V_g = 32V$. Fig. 2 shows the degradation of device parameter during stress. R_{on} degrades much more seriously than G_{mmax} . Besides, V_T shift is small (< 10mV), revealing that stress-induced damage is mainly located in the N⁻ drift region. Note that the value of I_{dsat} degradation is close to R_{on} degradation. Such a trend is different from most of the hot-carrier-induced degradation in DEMOS devices where R_{on} degradation is much greater than I_{dsat} degradation [3].

To investigate the mechanism responsible for device degradation, the impact ionization rate along Si/SiO_2 interface is simulated. Results in Fig. 3 reveal that the

maximum of impact ionization is located at the STI corner closest to the channel (i.e. Si/SiO_2 interface in L_s region). To experimentally locate the damage, ΔN_{it} in L_{ch}, L_{acc}, and L_s regions are extracted from I_{cp} data by the method proposed in [4]. Results in Fig. 4 show that ΔN_{it} in L_{ch} region is much smaller than ΔN_{it} in L_{acc} and L_s regions. This is consistent with the data in Fig. 2 that G_{mmax} degradation and V_T shift are small. For ΔN_{it} in L_{acc} and L_s regions, ΔN_{it} in L_s region is much greater than ΔN_{it} in L_{acc} region. Such a result suggests that the device degradation is mainly caused by ΔN_{it} in L_s region. This is also consistent with the simulation result in Fig. 3 that the impact ionization maximum is located in L_s region. To further verify whether device degradation is caused by ΔN_{it} in L_s region, the correlation between device degradation and ΔN_{it} in L_s region is investigated. As seen in Fig. 5, ΔN_{it} in L_s region correlates with Ron and Idsat degradation well. According to results in Figs. 3–5, ΔN_{it} in L_s region is the main mechanism responsible for Ron and Idsat degradation.

To examine the mechanism responsible for unexpected high Idsat degradation, Id vs. Vd characteristics of the device is shown in Fig. 6. When the measured V_g is lower (8, 16V), the saturation of I_d under high V_d bias is due to the pinch-off in the channel region. When the measured V_g is higher (24, 32V), the increase of saturation I_d becomes less evident because the saturation of I_d under high V_d bias is caused by carrier velocity saturation in the drift region rather than by conventional pinch-off in the channel region. Such a phenomenon is known as quasi-saturation [5]-[6]. To investigate the effect of quasi-saturation on device degradation, I_d degradation ($\Delta I_d/I_d$) measured at $V_d = 32V$ with measured Vg as a parameter is analyzed. As seen in Fig. 7, $\Delta I_d/I_d$ is small when the measured V_g is lower. However, $\Delta I_d/I_d$ is significant when the measured V_g is higher. To understand the effect of measured V_g on $\Delta I_d/I_d$, current flow of the device biased at low V_g ($V_g = 8V$) and high V_g ($V_g = 32V$) under $V_d = 32V$ are simulated and shown in Fig. 8. When the measured V_g is low, the current flow in L_s region is distributed away from Si/SiO₂ interface due to channel pinch-off. Thus, ΔN_{it} in L_s region has small influence on $\Delta I_d/I_d$, resulting in small $\Delta I_d/I_d$. On the other hand, when the measured V_g is high (the device is operated under quasi-saturation region), the current flow in L_s region is close to Si/SiO₂ interface. Thus, ΔN_{it} in L_s region has severe impact on $\Delta I_d/I_d$ at high measured V_g. According to results in Figs. 6-8, the occurrence of quasi-saturation is the main mechanism responsible for unexpected high I_{dsat} degradation.

4. Conclusions

The mechanism of hot-carrier-induced degradation in our DEMOS transistor is identified to be ΔN_{it} in L_s region. Our findings also reveal that unexpected high I_{dsat} degradation is observed in devices that exhibit quasisaturation phenomenon. Such anomalous I_{dsat} degradation should be paid special attention in evaluating hot-carrier reliability of DEMOS transistors.

References

- [1] A. Moscatelli et al., Proc. ISPSD, (2000) 323.
- S. Pendharkar et al., Proc. ISPSD, (2004) 419. [2]
- [3] D. Brisbin et al., Proc. IRPS, (2002) 105
- [4] C. Chen et al., IÉEE Trans. Élèc. Dev., 45 (1998) 512.
- [5] D. Moncoqut et al., Proc. BCTM, (1996) 216.
 [6] A. C. T. Aarts et al., IEEE Trans. Elec. Dev., 53 (2006) 897.

Fig. 1 The structure of DEMOS transistors used in this work.

Fig. 2 Device degradation data show that the value of I_{dsat} degradation is close to Ron degradation.

Fig. 3 Simulation results show that the maximum of impact ionization rate along Si/SiO₂ interface is located at L_s region.

Fig. 4 The extracted ΔN_{it} data reveal that ΔN_{it} in L_s region is much greater than ΔN_{it} in L_{ch} and L_{acc} regions.

Fig. 5 ΔN_{it} in L_s region correlates with R_{on} and I_{dsat} degradation well.

Fig. 6 Increase of saturation I_d is less evident when the measured Vg is higher, revealing the occurrence of quasi-saturation.

Fig. 7 $\Delta I_d/I_d$ is small when the measured V_g is lower, however, $\Delta I_d/I_d$ is significant when the measured V_g is higher.

Fig. 8 Current flow of the device biased at $V_g = 8V$ and 32V when $V_d = 32V$. The current flow is close to Si/SiO₂ interface in L_s region when the device is biased at $V_g = 32V$.