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1. Introduction

When poly-Si is substituted by poly-SiGe as a gate ma-
terial for the MOS transistors, it is well known that the po-
lycrystalline silicon -germanium films (poly-SiGe) have the
main advantages of good compatibility with standard
CMOS process. Others advantages have also been reported
[1] that (a) the dopant activation in poly-SiGe is compara-
ble to poly-Si, (b) the workfuntion is decreasing with in-
crease in the Ge mole fraction, (c) the workfunction change
originates in band gap reduction caused mainly by the in-
crease of the effective SiGe lattice constant. Furthermore,
the literature [2] indicates that poly-SiGe can substitute
poly-Si as a CMOS gate material for Ge mole fractions not
exceeding 0.6 (for both n- and p-type gates) and that the
technology is still in a developmental stage [3].

In this work, a comparative study of CMOS transistors
fabricated in a conventional way (with poly-Si gate) and
with two layers (poly-Si/SiGe) as a gate material is pre-
sented and we demonstrate that improvements in the
CMOS transistors performance can be achieved by an en-
gineering of gate workfunction.

The SiGe integration with local CMOS process was
developed which uses a single n" doped, poly-Sij-Gegs
gate material to achieve both n” doped gate n-MOS and n*
doped gate p-MOS devices. The achieved reduction of gate
depletion and improved DC characteristics agree with lit-
erature [4] [5] observing that this literature uses a single p"
doped, poly-Si;Ge, gate material. Furthermore, as gate
oxide becomes thinner, the benefit of SiGe gate becomes
more obvious.

For low noise evaluation purpose, the devices were bi-
ased in low regime and examined the low-frequency noise
(1/f) based on the method reported in literature [6].

2. Device Fabrication

A total of 57 steps of process were required for our
standard CMOS, including a total of 8 photolithography
steps, as described in references [7]. An integration scheme
required after gate oxide some additional steps of process.
A 30nm gate TCE oxide was grown at 1000°C and then
followed by the deposition of 500nm undoped poly-Si and
of 100nm undoped SiGe as gate layers. The undoped
poly-SiGe films used throughout this work were deposited
by low-pressure chemical vapor deposition (LPCVD) using
SiH, and GeH, as the sources. Details of our local tech-
nique to overcome the problem of growing undoped SiGe
and Poly-Si layer structures were reported elsewhere [8].
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3. Device Characteristics

The CMOS transistors were fabricated to demonstrate
the advantages of using poly Si;..Ge, as the gate material,
using CCS standard 2pm CMOS process. Since it is advis-
able for RF design, a low gate voltage biasing with same
drain current level, it required that the poly-Si/SiGe gate p
or n-MOSFETSs have output conductance and peak trans-
conductance G, improved when compared to poly-Si gate
MOSFETSs. The observed increase in G, value indicates an
improvement due to poly-Si/SiGe gate and this behavior is
noticeable in the n-MOS device characteristics shown in
figure 1.
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Fig. 1 Threshold characteristics for two n-MOSFETs devices with
the same size of W=20um, L=1.57um at Vpg= 0.1V with SiGe
gate (solid lines) and with poly-Si gate (dot lines) L,,=2.57um.

The p-MOSFETs of W=20um, L,q,=1.57pum at Vpg=
-0.1V, exhibited peak transconductance G, of 54.1uS and
22.0uS, for SiGe and for poly-Si (L,,y=2p1m) gates, respec-
tively, demonstrating an improvement to higher G, in
comparison to poly-Si gate.

The threshold-adjust implant doses were selected to al-
low nominal threshold voltages of + 0.7V for poly Si gate
devices. The same threshold-adjust implant doses were
selected for poly Si/SiGe gate devices, so the shift in thre-
shold voltage due to the presence of Ge in the gate material
is apparent in the p-MOS and n-MOS device characteristics
shown in figures 1 and 2. One can see that, the n-MOS
threshold voltage is = + 0.2V and it is suitable for low
power n-MOS transistor, RF detector and RFID tag appli-
cations. Whereas, the p-MOS threshold voltage is = + 1.0V
however, this device has higher G, than poly Si gate
p-MOS as shown figure 1 and 2.

Figures 2 and 3 show the comparison of measured tran-
sconductance curves of poly-Sig,Geg; gate MOS transis-



tors for different gate length: L=3, 5, 8, 10 and 20 um for
the same gate width of W=20 pm.

The impact of gate depletion on transistor current drive
is estimated by the inversion charge Q;,,. As observed by
Yu [4], the ratio (Qiny sige / Qinv si) 1S greater than unit and
increases as (Vgs-Vr) increases. As shown in figure 1, 2
and 3, this result agrees with the measured G,, curves for
poly-Siy.,Gey; gate MOS transistors for different gate size.
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Fig. 2 Plot of G,, with Vg5 and L=3,5 and 8um show the shift in
threshold voltage
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Fig. 3 Plot of G, with (Vgs -V1) and L=3, 5, 8, 10 and 20pum.

The examination of low-frequency noise (1/f ) based on
the method reported in literature [6], a probe station, a LNA
amplifier, a Keitley DC measurement system and a HP
3560A Signal analyzer were used. All data (Ip) is sub-
tracted from amplifier (noise and gain). This result is raised
to the square quantified by Ip” value, thus one have the
Noise Power Spectral Density (drain noise) with dimension

2
(A°/Hz).
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Fig. 4 Plot of Gate Noise Sy, x frequency of n-MOSFET
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Figure 4 for n-MOSFET and figure 5 for p-MOSFET
shows the plot of Gate Noise Power Spectral Density Sy, x
frequency after dividing the data of drain noise by G,,> and
thus to get Sy,. with the same size Loy =1.57pm, W=20pm
and with poly-Si/SiGe gate. The observed results are in
agreement with reported noise data in [9], [10]. The gate
noise Sy, measurements (for 100Hz noise between 10"
and 1072 for W=20um, L=1,57um) is about the same order
presented in literature (for 100Hz, noise between 10" and
1072 for W=10um, L=0,25um).
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Fig. 5 Plot of Gate Noise Sy, x frequency of: p-MOSFET

3. Conclusions

In summary, a single n' doped, poly-Si, ,Ge, gate
CMOS technology is advantageous compared to single n"
or double doped, poly-Si gate CMOS technology. We had
integrated a Sij; Geg; gate material of MOSFET transistors
in the CMOS process with few exchanges. We demonstrate
a reduction of gate depletion and DC characteristics im-
provements. The extracted noise values are low and suit-
able for RF application and these results show a good per-
formance of the fabricated devices.
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