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1. Introduction 

Organic thin-film transistors (OTFTs) have attracted a 

great deal of attention during the past decade as they are 

promising components for low-cost, large-area, and flexible 

electronics. To make full use of organic circuitry, it is es-

sential to combine p-channel transistors with n-channel 

transistors for the fabrication of organic complementary 

circuits which offer lower power dissipation and greater 

operating speed. Less than five years ago n-channel semi-

conductors were far less developed compared to p-channel 

materials [1, 2]. In recent years, however, there has been a 

remarkable progress in the molecular design, device per-

formance and stability for n-channel OTFTs [3-11]. Herein 

we report recent progress in materials design and processes 

for high-performance air-stable n-channel OTFTs, mainly 

focusing on the development of most-commonly used 

n-channel semiconductors, i.e., perylene diimide (PDI) and 

naphthalene diimide (NDI) derivatives. 

 

2. Results & Discussions 

Materials Design and Process Optimization for 

High-Performance n-Channel OTFTs 

Since the initial demonstration of n-channel OTFTs us-

ing metal-phthalocyanines as the semiconductor in 1990 

[12], a large number of n-channel organic semiconductors 

have been synthesized, mainly based on five kinds of small 

molecular frameworks such as metal-phthalocyanines, ful-

lerenes, oligothiophenes, NDIs and PDIs, as well as poly-

mers composed of these small molecular monomer units. 

Among them, NDIs and PDIs have received particular in-

terest due to their high electron affinity, large -orbital 

overlap in the solid state, and tunability of the optoelec-

tronic property.  

The current strategies to stabilize field-induced electron 

charge carriers in n-channel OTFTs can be divided into 

three approaches: i) molecular design to lower the LUMO 

level and/or to form a kinetic barrier in the semiconductor 

thin film, ii) electrode contact modification, and iii) inter-

face engineering between the dielectric and semiconductor. 

The first strategy is to make -conjugated cores of organic 

semiconductors electron-deficient (electron-accepting) and 

to reduce trapping of electron charge carriers by substitu-

tion with strong electron-withdrawing and/or hydrophobic 

substituents such as F [2], CN [10], Cl [13], alkanoyl [14], 

perfluorobenzene [15], and fluoroalkyl groups [1]. It 

enables air-stable n-channel operation by significantly lo-

wering the LUMO of the resulting molecule to resist am-

bient oxidation and/or by forming a kinetic barrier against 

the diffusion of ambient oxidants into the channel. The 

second approach, in terms of charge injection, is to minim-

ize the injection energy barrier from the electrode to the 

LUMO by employing electrodes with low workfunctions 

[16]. The third, developed more recently, is to eliminate 

deep electron trapping sites by passivating the dielec-

tric/semiconductor interface [4]. 

Considering these backgrounds, we have synthesized a 

series of core-halogenated NDI and PDI derivatives with 

varying fluorinated imide substituents. We have carried out 

a detailed evaluation aimed at a better comprehension of 

the influence of bay and imide substituents of perylene dyes 

on the crystal packing and their use as n-type organic sem-

iconductors in electronic devices. The single crystal struc-

tural analysis, thin film morphological analysis, and optoe-

lectronic characteristics were thoroughly investigated to 

reveal structure-property correlations.  

The molecular packing of core-chlorinated NDIs 

showed various advantageous characteristics for charge 

transport including the marginal core distortion ( 7), 

close -plane distance (3.33.4 Å ), large -orbital overlap 

(slipping angle ~ 62) and high packing density. These 

features of core-chlorinated NDIs lead to excellent electron 

mobilities up to 1.43 cm
2
V

1
s
1

 in air. For several PDIs 

with a flat aromatic core owing to the presence of only up 

to two fluorine substituents at the PDI bay positions, we 

could obtain n-channel transistors with field effect mobili-

ties between 0.5 and 1.44 cm2V–1s–1 and on-to-off current 

ratios (Ion/Ioff) > 106 [8]. In contrast, PDIs with a distorted 

aromatic core evoked by four halogen substituents at the 

PDI bay positions showed lower mobilites and Ion/Ioff. This 

is attributed to packing constraints arising from the dis-

torted core that encumber the formation of extended highly 

crystalline grains. However, increasing the number of chlo-

rine substituents at the perylene core from four to eight 

(“molecular engineering”) afforded a substantial lowering 

of the LUMO level while the combination of hydro-

gen-bonding and contortion of the -core allows 

two-dimensional --stacked percolation paths for electron 

transport (“crystal engineering”, Fig. 1) [7]. As a conse-

quence of this molecular design, core-octachlorinated 

PDI-based TFTs operated in air with excellent electron 

mobility of almost 1 cm2V–1s–1 and high Ion/Ioff > 106. 
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Fig. 1  Crystal engineering concepts to change the 

common 1-D -stacking herringbone motif (a) with pla-

nar (b) or contorted (c) brickstone arrangements that 

enables 2-D percolation paths for charge transport. 

 

Single-Crystalline Nano/Microwires for n-Channel OTFTs 

Although single-crystalline organic semiconductor na-

no/microwires (NWs/MWs) have great potential as active 

materials in solution-formed high-performance transistors, 

the technology to integrate these elements into functional 

networks with controlled alignment and density has lagged 

far behind their inorganic counterparts. We have recently 

developed a novel solution-processing approach to achieve 

high-performance air-stable n-channel organic transistors 

(the field-effect mobility () up to 0.24 cm2V–1s–1 for MW 

networks) comprising high mobility, solution-synthesized 

single-crystalline organic semiconducting MWs ( as high 

as 1.4 cm2V–1s–1 for individual MWs) and a new filtra-

tion-and-transfer (FAT) alignment method [17]. The FAT 

method enables facile control over both alignment and den-

sity of MWs. This approach presents a new route toward 

solution-processed, high-performance organic transistors 

and could be used for directed assembly of various func-

tional organic and inorganic NWs/MWs. 

N-Type Doping for Air-Stable n-Channel OTFTs 

The ambient traps result in a significant decrease of the 

density of mobile electrons in n-channel OTFTs and thus, 

poor air-stability. We hypothesized that controlled n-type 

doping might compensate for the trapped charges. Previous 

attempts at intentional doping have increased film conduc-

tivities as a result of increased charge carrier density. 

However, the design of n-type (vs. p-type) dopants is con-

siderably challenging owing to the requirement of 

high-lying dopant highest occupied molecular orbital 

(HOMO) levels, making n-type dopants unstable against 

ambient oxidants.  

 

 

 

 

 

Fig. 2  The n-type doping mechanism of N-DMBI. 

 

We developed a new solution-processable n-type do-

pant 4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazole-2-yl) 

-phenyl)-dimethyl-amine (N-DMBI) (Fig. 2) [18]. N-DMBI 

neutral radicals were found to be the key species enabling 

n-type doping. Furthermore, we utilized this dopant to ena-

ble, and improve the air-stability of n-channel OTFTs, via 

compensation for the ambiently trapped electron charge 

carriers. Our successful demonstration of n-type doping 

opens up new opportunities for the development of 

air-stable n-channel semiconductors.  

 

3. Conclusions 

   We believe that our systematic studies on a series of 

core-halogenated NDI and PDI derivatives provide guide-

lines for the molecular design and process strategies to-

wards air-stable n-channel organic transistors, which in-

volve crystal engineering concepts for charge transport, and 

aligned single-crystalline wire transistors, and intentional 

n-type doped transistors.   
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