Effects of GeO₂-Metal Interaction on V_{FB} of GeO₂ MIS Gate Stacks

Fuad I. Alzakia¹, Koji Kita^{1,2}, Tomonori Nishimura^{1,2}, Kosuke Nagashio^{1,2} and Akira Toriumi^{1,2}

¹Department of Materials Engineering, TheUniversity of Tokyo, ² JST-CREST 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Phone : +81-3-5841-7161 Fax : +81-3-5841-7161 E-mail: fuad@adam.t.u-tokyo.ac.jp

1. Introduction

The flatband voltage (V_{FB}) shift of GeO₂ MIS gate stack is not fully understood, because an unexpected negative shift is often observed and time-dependent shift by the exposure to the air has been also pointed out [1]. We also have to pay attention to the V_{FB} shift by Fermi-level pinning (FLP) of metals on oxides [2] and dipole layer formation at oxide/oxide interface [3], which are often reported for high-k gate stacks. In this study we clarify the V_{FB} shift of GeO₂ MIS stacks by metal-GeO₂ interactions.

2. Experimental

The GeO₂films were deposited by rf-sputtering of GeO₂ target, on thermally oxidized p-Si wafers. After annealing in N₂+ O₂ 0.1% ambient at 600°C, Al, Cu, and Au were evaporated to fabricate metal/GeO₂/SiO₂/p-Si MIS capacitors. No annealing was conducted after gate metal deposition. Note that the deposited GeO₂ films on SiO₂ were employed in this study, instead of thermal oxide, to focus our attention to the metal/GeO₂ interface phenomena without the effects of GeO₂/Ge interface reactions, such as GeO desorption [4]. For comparisons, HfO₂ MIS capacitors were also fabricated on the same substrates.

3. Results and Discussions

The 1 MHz C-V characteristics of Au/GeO₂/SiO₂/p-Si MIS capacitors with various GeO₂ thicknesses are shown in **Fig. 1**. It is clearly seen that the effects of fixed charges at the interface and those in the bulk on V_{FB} are negligibly small, because there is no thickness dependence of V_{FB} . However, it should be noted that the V_{FB} is always negatively shifted (-0.3V~ -0.4V) from that of the SiO₂ MIS stack without GeO₂ irrespective of GeO₂ thickness.

There are two possible interface phenomena as the origin of the observed V_{FB} shifts in Fig. 1: the FLP of metals on GeO₂ and the dipole formation at GeO₂/SiO₂ interface. In order to clarify which phenomena are dominant, V_{FB} of the capacitors with different gate metals and various GeO₂ film thicknesses were examined. In this experiment, the GeO_2 films were chemically etched in $H_2O + CH_3OH$ solution to obtain a variety of film thickness before annealing the films at 600°C. As shown in Fig. 2, it is clearly seen that the V_{FB} difference between the GeO₂ MIS capacitor and the SiO₂ one significantly changes by employing different gate metals. The V_{FB} on GeO₂ showed a significant negative shift only in the case of Au, whereas almost no V_{FB} shift or even a slight shift to the opposite direction was observed in the case of Cu and Al. Thus it should be the metal/GeO₂ interface, rather than the bottom interface, that has the dominant role to determine the V_{FB} shift. In Fig. 3, the V_{FB}

Fig. 1 C-V characteristics of Au/GeO₂/SiO₂/p-Si MIS capacitors with various GeO₂ film thickness. The samples were annealed at 600°C in N₂ + 0.1% O₂ ambient before Au deposition. No PMA was applied. A negative V_{FB} shift (-0.2~ -0.3 V) was clearly observed, even though V_{FB} does not show any dependence on the GeO₂ film thickness.

Fig. 2 GeO₂ film thickness dependence of V_{FB} of GeO₂/SiO₂/p-Si MIS capacitors with Au, Cu, and Al as the gate metals. The horizontal axis shows capacitance equivalent thickness (CET) of GeO₂ films, determined from difference between the total CET and that of SiO₂. Cu gate and Al gate capacitors result in quite a small V_{FB} shift compared with Au gate ones.

of SiO₂, GeO₂/SiO₂, and HfO₂/SiO₂ MIS capacitors are plotted as a function of the vacuum work functions of the gate metals [5]. It is obvious that the data of GeO₂ capacitors do not show the linear dependence on the vacuum work function of the metals. On the other hand, the V_{FB} shift of HfO₂/SiO₂ stack always shows a constant positive shift around +0.2 ~ +0.3 V, irrespective of the employed gate metals. This behavior is attributable mainly to the dipole effects at HfO₂/SiO₂ bottom interface, whereas the HfO₂/metal interaction is suggested to be negligible.

Fig. 3 Relationship between flatband volatage (V_{FB}) and vacuum work function of the employed gate metals for GeO₂/SiO₂/p-Si, SiO₂/p-Si, and HfO₂/SiO₂/p-Si MIS capacitors. The thickness of SiO₂ (~6nm) is identical to all the samples, although that of both GeO₂ and HfO₂ films are ~ 2.5 nm. Note that the film thickness dependence of V_{FB} is small enough for all the samples to extract the V_{FB} to discuss the effective work functions of metals

Thus the pronounced metal-dielectric interaction is a unique phenomenon only observed for GeO_2 gate stacks.

Next we investigated the interface reactions between the metal and GeO2, by Ge3d XPS measurements of GeO₂/SiO₂/Si stacks covered with ultrathin Au, Cu and Al films. As shown in Fig. 4, we found that the reduction of GeO₂ into Ge was clearly observed only for Al/GeO₂ interface, by the reaction of $GeO_2+Al \rightarrow Al_2O_3+Ge$, even though we did not employ any annealing after metal deposition. On the other hand, no reaction was detectable by XPS at the Au/GeO2 interface. This is because such red-ox reaction should be pronounced more for the lower work function metals. Based on these results, we consider a possible model to explain what we observed in this study as follows. It is well known that the oxygen-deficient GeO₂ often forms neutral oxygen vacancies or divacancies (divalent Ge centers) [6], and we actually detected a photo absorption in GeO₂ films corresponding to the formation of those defects [7]. Those defects existing at the GeO_2 surface can be the origin of the electron transfer from GeO_2 to Au, by taking account of the model to explain the FLP of poly-Si on HfO_2 with oxygen vacancies [8]. Note that chemically non-reactive interface of Au/GeO2 will not allow the atomic transfer but the electron transfer as shown in Fig.5 (a). On the other hand, Al/GeO₂ interface is expected to become Al(+Ge)/AlOx/GeO₂ layered structure as the result of interface reaction, as schematically shown in Fig. 5 (b). Then the GeO_2 surface is passivated by ultrathin AlOx layer, which will be the reason for the quite small V_{FB} shifts of Al-gate capacitors. Based on these considerations, the significant V_{FB} shift for the Au gate capacitors is possibly attributed to FLP of Au caused by the oxygen-deficient type defects on the surface of GeO₂, whereas the FLP is not significant for the low work function metals like Al because of the interface red-ox reactions to form an interface layer.

4. Conclusions

The metal-GeO₂ interaction significantly affects the V_{FB} of GeO₂ MIS stacks. The negative flatband voltage shift of Au/GeO₂/SiO₂/Si MIS capacitor will be the result of FLP of Au on GeO₂, probably caused by the defects on GeO₂ surface, whereas the Al-GeO₂ interaction is suppressed because of the interface reaction to passivate the GeO₂ surface.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan, and partly performed in collaboration with STARC.

References

- [1] T.Hosoi et al., APL 94, 202112 (2009).
- [2] C.C.Hobbs et al., *IEEE TED* 51,971 (2004).
- [3]Y.Yamamoto et al., *JJAP* 46,7251 (2008).
- [4] K. Kita *et al. JJAP* 47 (4) 2349 (2008).
 [5] H.B.Michaelson, *JAP* 48,4729(1977).
- [6] H. Hosono *et al.*, *PRB* 46, 11445 (1992).
- [7] K. Kita *et al.*, *SSDM 2009*.
- [7] K. Kita *et al.*, SSDM 2009.
- [8] K. Shiraishi et al., VLSI Symp. 2004.

Fig. 4 Ge3d XPS of GeO₂ covered with ultrathin (~ a few nm) Au, Cu, and Al films. The signal intensity is normalized by Ge⁴⁺. The reaction between the metals and GeO₂ results in the reduction of Ge at the interface even without PMA, which will be more pronounced for metals with lower work functions. Especially, in the case of Al, the reduction of Ge⁴⁺ results in the formation of significant amount of Ge⁰

(a) Au/GeO2	(b) Al/GeO ₂
e ⁻ Au	Al (+Ge)
V.	AlOx
GeO2	GeO ₂ Ge
SiO ₂	SiO2
Si	Si

Fig. 5 Schematics of the interactions between metal and GeO₂ film for (a)Au/GeO₂ and (b)Al/GeO₂. In the case of Au/GeO₂, electron transfer occurs since there is no passivation layer to suppress the interaction between the defects states in GeO₂ and Au. On the other hand, the reaction of GeO₂+Al \rightarrow Al₂O₃+Ge will reduce GeO₂ and extract Ge to form Al-Ge alloy which was detected in Fig. 5, accompanied with the formation of AlO_x ultrathin layer to passivate the GeO₂-metal interactions.