Suppression of ALD-Induced Degradation of Ge MOS Interface Properties by Low Power Plasma Nitridation of GeO₂

Rui Zhang, Takashi Iwasaki, Noriyuki Taoka, Mitsuru Takenaka and Shinichi Takagi

School of Engineering, The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
Phone: +81-3-5841-6733 E-mail: zhang@mosfet.t.u-tokyo.ac.jp

1. Introduction

A Ge-based MOSFET has attracted lots of interests because of its much higher mobility compared with Si MOSFETs, which provides a possibility to overcome the limitations of CMOS device scaling. Here, high-k dielectrics are desired for realizing advanced Ge MOSFETs with thin EOT. However, Ge/high-k interfaces are usually of poor quality so that a suitable interfacial layer (IL) is necessary. One of the most promising ILs is GeO₂ which has demonstrated effective passivation of Ge [1-5]. Recent researches have revealed that, when high k dielectrics are deposited on GeO₂ ILs by atomic layer deposition (ALD), significant increase in D it is observed for around 1 nm thin GeO₂ [6, 7], which is attributable to the degradation of the GeO₂ quality caused by H₂O and O₃ in ALD process. On the other hand, GeON films formed by nitridation of GeO₂ [8, 9] become much more stable and exhibit the water-tolerant properties. However, thin GeON/Ge interfaces have been reported to exhibit much larger D it [7]. In this study, we examine the effects of in-situ plasma nitridation to plasma oxidation GeO₂ on the degradation of MOS interfaces due to ALD Al₂O₃ deposition. It is found that light nitridation process can effectively suppress the degradation of ultra-thin GeO₂ IL due to the H₂O based ALD process with maintaining the high quality interface properties with low D it values.

2. Experimental

P-type Ge wafers with (100) orientation and resistivity of ~0.45 Ω·cm were used. After cleaned by water, acetone, and cyclic HF-water treatment, a GeO₂ film was formed by plasma oxidation using an Electron-Cyclotron-Resonance (ECR) system with a microwave power of 500 W at 300 °C. An in-situ plasma nitridation was carried out with different microwave power (500 W, 200 W and 100W) at 300 °C. After that a 2-nm-thick Al₂O₃ film was deposited by ALD (precursor: TMA and H₂O) at 300 °C. PDA was carried out at 400 °C in N₂ for 30 min, and Al electrodes were formed by thermal evaporation.

3. Results and Discussion

First, the influence of ALD Al₂O₃ deposition on GeO₂/Ge interfaces was examined. Fig. 1 and 2 show the C-V curves and the energy distribution of D it, evaluated by the conductance method, for Al/Al₂O₃/GeO₂/Ge MIS structures with GeO₂ film thickness of 2.7 and 1.5 nm, which was formed by plasma oxidation of Ge at 500 W for 1 min and 5s, respectively. It is found that, as the GeO₂ thickness is decreased from 2.7 nm to 1.5 nm, significant degradation of D it from ~2×10⁻¹¹ to ~6×10⁻¹² cm²/Vs is observed. This degradation is attributed to the change in the oxidation condition of GeO₂ due to ALD process, shown in the lower energy shift of the Ge oxide peak in the Ge 3d peak of XPS (Fig. 3).

Thus, in-situ ECR plasma nitridation was carried out after the formation of GeO₂ by plasma nitridation in order to suppress the ALD-induced damage. First, GeO₂ (2.7 nm)/Ge samples were used to check the influence of the nitrogen plasma power on MOS electrical properties, as shown in Fig. 4. The formation of GeON layers after nitridation is clearly observed from the increase in the N 1s peak. At the same time, the Ge-O peak shifts to lower binding energy, attributable to the nitrogen incorporation. The N/Ge atom ratios in the GeON film are estimated from the N 1s peak to be 0.93, 0.71 and 0.60 after the nitridation with 500 W, 200 W for 1 min and 100 W for 2 min, respectively. The gate leakage current (Fig. 5) and the C-V characteristics (Fig. 6) of Al/Al₂O₃/IL/Ge MOS structures become worse with an increase in the plasma nitridation power, suggesting the increase in the amount of N atoms near the GeO₂/Ge interfaces can degrade the electrical properties. It is found, however, from the results of D it evaluation (Fig. 7) that the sample nitridized at a low plasma power of 100 W can keep a good interface with D it of 3×10¹¹ cm⁻²/Vs, while the sample nitridized at 500 W exhibits D it of 2×10¹² cm⁻²/Vs. Also, the hysteresis of C-V curve is 70-100 mV for these samples.

The impact of the low power plasma nitridation is clearly observed for MOS structures with thinner GeO₂ IL (1.5 nm). The C-V characteristics (Fig. 8) and D it (Fig. 9) of Al/Al₂O₃/GeO₂/Ge MOS capacitors fabricated by the plasma nitridation of 1.5 nm GeO₂ at 100 W for 1 min are found to be significantly improved, compared with that without nitridation shown in Fig. 1(b) and Fig. 2. Fig. 10 summarizes the impact of plasma nitridation on D it after ALD process. Here, the change in the plasma power is plotted as the difference in the N/Ge atom ratio of GeON. It is clearly demonstrated that the low power plasma nitridation effectively suppress the degradation of the MOS interface properties due to ALD Al₂O₃ deposition with maintaining the low D it values inherent to GeO₂/Ge interfaces.

4. Conclusions

The degradation of ultra-thin GeO₂ IL and the GeO₂/Ge interface after ALD Al₂O₃ deposition was confirmed. As a solution for this problem, we have proposed a low power plasma nitridation process to GeO₂ IL and demonstrated that this process allows us to eliminate the degradation without losing superior MOS interface properties of GeO₂/Ge.

Acknowledgement The authors would like to acknowledge Mr. Takuya Hoshii and Mr. Yi Zhao of the University of Tokyo for their support in this research.

References

Figure 1: C-V curves of the Al/Al2O3/GeO2/Ge MIS structures with different GeO2 thickness. (a): 2.7 nm; (b): 1.5 nm.

Figure 2: Δ of the Al/Al2O3/GeO2/Ge MIS structures with different GeO2 thickness.

Figure 3: Ge 3d XPS spectra of the GeO2/Ge sample before and after ALD deposition.

Figure 4: XPS spectra of the GeO2/Ge and the GeON/Ge samples with different nitridation parameter.

Figure 5: I-V curves of the Al/Al2O3/IL/Ge samples with different nitridation process of 2.7 nm GeO2.

Figure 6: C-V curves of the Al/Al2O3/IL/Ge samples with different nitridation process of 2.7 nm GeO2. (a): 100 W, 2 min; (b): 200 W, 1 min; (c): 500 W, 1 min.

Figure 7: Δ of the Al/Al2O3/IL/Ge samples with different nitridation process of 2.7 nm GeO2.

Figure 8: Electrical properties of Al/Al2O3/GeON/Ge sample from 1.5 nm GeO2 by 100 W plasma nitridation for 1 min.

Figure 9: Δ of Al/Al2O3/IL/Ge samples from 1.5 nm GeO2 w/o and with 100 W plasma nitridation for 1 min.

Figure 10: Δ at E=0.15 eV along with different N/Ge ratio and thickness of GeON IL.