Ge Self-Diffusion in Compressively Strained Ge Grown on Relaxed Si$_{0.2}$Ge$_{0.8}$

Yoko Kawamura1, Masashi Uematsu1, Kohei M. Itoh1, Yusuke Hoshi2, Kentaro Sawano2, Yasuhiro Shiraki3, Eugene E. Haller3, and Maksym Myronov4

1Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
2Tokyo City University, 8-15-1 Todoroki, Setagaya-ku, Tokyo 158-0082, Japan
3University of California at Berkeley, 1 Cyclotron Road, Berkeley, California 94720, USA
4The University of Warwick, Coventry CV4 7AL, United Kingdom

1. Introduction

Recently, there has been an increased interest in the use of compressively strained germanium (s-Ge) in channel regions of p-type metal-oxide-semiconductor (MOS) field-effect transistors because of their ability to enhance hole mobility. Compressively s-Ge is fabricated on relaxed silicon germanium (SiGe), which has a smaller lattice constant than that of Ge, and strain is controlled by varying the Ge content in the relaxed SiGe. A thorough understanding of Ge self-diffusion in s-Ge leads to clarify the properties of point defects and their associated dopant diffusion mechanisms, which is crucial for the technical innovation of s-Ge channel MOS devices. In recent years, there have been several interesting reports on Si and Ge self-diffusion in s-Ge. It is difficult to observe and quantitatively evaluate diffusion in s-Ge because the strain is easily relaxed during annealing. In order to maintain the strain, s-Ge needs to be a thin layer, where dislocation density is low. In this work, we successfully fabricated relaxed Si$_{0.2}$Ge$_{0.8}$/compressively s-Ge isotope superlattice (SL)/relaxed Si$_{0.2}$Ge$_{0.8}$ heterostructures. Furthermore, we present the first measurements of Ge self-diffusion in compressively s-Ge.

2. Experiment

Figure 1 shows the schematic illustration of relaxed Si$_{0.2}$Ge$_{0.8}$(50nm)/s-Ge isotope SL(60nm)/relaxed Si$_{0.2}$Ge$_{0.8}$(50nm) heterostructures fabricated in this study. In order to smooth the sample surface and avoid contaminating the s-Ge layer, a 50-nm-thick Si$_{0.2}$Ge$_{0.8}$ buffer layer was grown by molecular beam epitaxy on Si$_{0.2}$Ge$_{0.8}$ virtual substrates, which in turn was grown by chemical vapor deposition. The GeSL, composed of alternating layers of isotopically enriched 70Ge and natural Ge (64Ge), was grown on the buffer layer. Finally, a 50-nm-thick relaxed Si$_{0.2}$Ge$_{0.8}$ cap layer was grown on the top as a stressor. The GeSL was sandwiched by two 64Ge (10nm) layers which act as barrier layers for Si interdiffusion into GeSL (40nm). These samples were annealed at temperatures between 475 and 600 °C for 0.5 – 61 h in a resistively heated furnace under a flow of 99.999 % pure Ar. The strains in the s-Ge were measured by X-ray diffraction (XRD). The depth profiles of 74Ge in the heterostructures were measured by secondary ion mass spectroscopy (SIMS). Ge self-diffusivities in s-Ge were determined by using a partial differential equation solver ZOMBIE. By using cross-sectional transmission electron microscopy, we saw that the effects of strain relaxation due to the creation of dislocations are negligible.

3. Result and discussion

Figure 2 shows the intensity peaks of asymmetrical (224) reciprocal space mapping (RSM) before and after annealing at 550 °C for 6 h, where the Q$_s$ corresponds to horizontal lattice constant. The Q$_s$ of s-Ge agreed well with that of relaxed Si$_{0.2}$Ge$_{0.8}$, both before and after annealing. The strains in s-Ge calculated from these peak values were -0.71%, which corresponds to an in-plane stress of -0.96 GPa, in the sample before annealing with the minus sign for compressive strain, and -0.66% after annealing. We obtained similar results of -0.71% after annealing at 550 °C for 1 h and -0.66% for 3 h, respectively. These results show that the compressive biaxial strain of approximately -0.7% was maintained during the annealing process. Figure 3 shows the depth profiles of 74Ge in the heterostructures measured by SIMS before and after annealing at 550 °C for 1 – 6 h and the simulation results. The SIMS depth profiles were fitted using a single value of Ge self-diffusivity for each temperature. We obtained a Ge self-diffusivity value of 6.40×10^{-18} cm2/s at 550 °C under compressive strain of approximately -0.7%. Figure 4 compares the temperature dependencies of Ge self-diffusivities in the strained and relaxed Ge obtained in this work, and the diffusivities in relaxed Ge previously reported in [4]. The values for relaxed Ge show an agreement with the previously reported values. However, we found that the Ge self-diffusivities in s-Ge were about 3.5 times larger than those in relaxed Ge at a diffusion
temperature within the range of 475 – 600 °C. The activation enthalpies of Ge self-diffusion were estimated to be 3.07 eV in s-Ge and 3.11 eV in relaxed Ge. It is known that Ge diffuses by a vacancy in relaxed Ge [4]. The closeness of the values indicates that Ge self-diffusion in compressively s-Ge also proceeds by the vacancy mechanism. Furthermore, we discuss the increase of the diffusivities in s-Ge in terms of the activation volume (V^{sd}) of self-diffusion.

$$V^{sd} = -kT \left(\frac{\partial \ln D}{\partial p} \right)_{T},$$

(1)

where k is Boltzmann constant, T is absolute temperature and D is self-diffusivity at constant temperature [4,5]. V^{sd} can be either positive or negative, depending upon whether D decreases or increases with p, respectively. The activation volume characterizes the effect of pressure on self-diffusivity and is an important property of the defects responsible for the diffusion. The activation enthalpy of self-diffusion under pressure changes by the work pV^{sd} of the system. In the case of the vacancy mechanism, V^{sd} is the volume change of the system upon the formation (V^f) and migration (V^m) of a vacancy, according to $V^{sd} = V^f + V^m$.

(2)

When a vacancy is created in crystalline Ge, one Ge atom leaves a lattice site and migrates to the surface. The volume of the crystal increases by one Ge atomic volume (Ω_{vac}) at standard T and p at the surface. V^f, however, depends on the degree to which the atoms surrounding the vacancy relax into it. Specifically, V^f is decreased by the relaxation

In conclusion, by means of Si$_2$Ge$_{0.8}$/GeSL/Si$_2$Ge$_{0.8}$ heterostructures, the first measurements of Ge self-diffusion under compressive biaxial strain were performed. We found that Ge self-diffusivities in compressively s-Ge are larger compared to those in relaxed Ge. Moreover, we obtained $V_{vac}^{sd} = -0.66 \pm 0.06 \Omega_{vac}$. This result is consistent with previous work stating that relaxation in Ge is strong [4].

4. Conclusion

Fig. 4 Temperature dependences of Ge self-diffusivities

V^f which is negative and, as a result, less than Ω_{vac}. Therefore, V^{sd} is given by

$$V^{sd} = \Omega_{vac} + V^f + V^m$$

(3)

Here, V^m is also negative due to the fact that the diffusing atom via a vacancy is expanding a constriction at the saddle point in its migration path [4]. Moreover, Aziz et al. [5] have reported that, if we have biaxial stress ($\sigma_{22} = \sigma_{11}$), V^f is dominated by the relaxation and migration terms because there is no force on the surface and the work to create a lattice site at the surface should be zero. According to these models, the activation volume (V^{sd}_{act}) of Ge self-diffusion under compressive biaxial stress should be negative. In this work, the decrease of the activation enthalpy of Ge self-diffusion in s-Ge compared to that of relaxed Ge by the magnitude of the work $|\sigma_{22}V^{sd}_{act}|$ results in the increase of self-diffusivities, which allows us to obtain $V_{vac}^{sd} = -0.66 \pm 0.06 \Omega_{vac}$. This result is consistent with previous work stating that relaxation in Ge is strong [4].

Acknowledgement

This work has been supported by the Research Program on Collaborative Development of Innovative Seeds by JST and Keio Global COE program.

References