Hole generation in B-implanted Ge without annealing: Formation of B₁₂ cluster acting as a double acceptor
Masahiro Koike and Yuuichi Kamimuta
MIRAI-Toshiba, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan
Phone: +81-44-549-2314 Fax: +81-44-520-1257 E-mail: m-koike@mail.rdc.toshiba.co.jp

I. Introduction
The formation of ultra-shallow and highly doped layer in semiconductor substrate has been studied for higher-performance LSIs of future generations. In the conventional process, impurities are usually introduced by ion implantation, and then annealing is performed to electrically activate the impurities; however, annealing causes the diffusion of impurities that makes it difficult to form shallow and highly doped layers.

Surprisingly, Mizushima et al. have found that the hole-concentration layers are generated in high-dose (≥ 3 × 10^{16} cm⁻²) B-implanted Si(100) substrates without any annealing process. They proposed the formation of icosahedral B₁₂ cluster [Fig. 1(a)] acting as a double acceptor in Si; substitutional sites in the as-implanted Si. The B₁₂ cluster has been studied theoretically on the basis of the first-principles local density functional approach. Okamoto et al. proposed that the octahedral B₁₂ cluster [Fig. 1(b)] is more stable than icosahedron. In contrast, Yamauchi et al. proposed that the icosahedron is more stable than the octahedron. Therefore, the formation of a stable cluster is not clear.

In this study, profiles of impurity concentrations and hole concentrations in B-implanted Ge are investigated under varied conditions. We present, for the first time, hole generation in B-implanted Ge are investigated under varied conditions. We present, for the first time, hole generation in B-implanted Ge without annealing. The formation of ultra-shallow and highly doped layer in semiconductor substrate has been studied for higher-performance LSIs of future generations. In the conventional process, impurities are usually introduced by ion implantation, and then annealing is performed to electrically activate the impurities; however, annealing causes the diffusion of impurities that makes it difficult to form shallow and highly doped layers.

Surprisingly, Mizushima et al. have found that the hole-concentration layers are generated in high-dose (≥ 3 × 10^{16} cm⁻²) B-implanted Si(100) substrates without any annealing process. They proposed the formation of icosahedral B₁₂ cluster [Fig. 1(a)] acting as a double acceptor in Si; substitutional sites in the as-implanted Si. The B₁₂ cluster has been studied theoretically on the basis of the first-principles local density functional approach. Okamoto et al. proposed that the octahedral B₁₂ cluster [Fig. 1(b)] is more stable than icosahedron. In contrast, Yamauchi et al. proposed that the icosahedron is more stable than the octahedron. Therefore, the formation of a stable cluster is not clear.

In this study, profiles of impurity concentrations and hole concentrations in B-implanted Ge are investigated under varied conditions. We present, for the first time, hole generation in B-implanted Ge without annealing.

II. Experiment
The surface of substrates, 3 in. nGe(100) wafers with Si₃N₄, were first treated with 1% HF solution for 5 min, and then rinsed with purified water for 10 min. After the treatments, B ions were implanted into the substrates. The implantation doses of B were 1 × 10^{13}–17 cm⁻². The acceleration energy in each case was 30 keV. The ion beams were tilted by 7° with respect to the normal to the surface. Using thermotape that changes color on reaching a specific temperature, we have confirmed that the temperature during implantation is less than 82°C, which is too low to cause re-growth and to electrically activate dopant in Ge. The Ge substrates annealed for 30 min at 400-600°C in N₂ were also prepared. The profiles of the impurity concentrations and the carrier concentrations were examined by secondary ion mass spectrometry (SIMS) and spreading resistance profiling (SRP), respectively. The crystallinity was checked by Rutherford backscattering spectrometry (RBS). The bonding state was confirmed by x-ray photoelectron spectroscopy (XPS) with Ar sputtering.

III. Results and Discussion
First, we investigated the profiles of impurity concentrations and hole concentrations of nGe(100), into which various doses of B (1 × 10^{13}–17 cm⁻²) were implanted. Figure 2(a) shows the profiles of impurity concentrations. The implanted B exist around the surface, nearly symmetrically with the projected range R_p (broken line). The profiles of hole concentrations, corresponding to the impurity ones, are shown in Fig. 2(b). Interestingly, high-hole-concentration layers (max: ~ 8 × 10^{20} cm⁻³) are observed in Ge without annealing, similar to the case in Si. It should be noted that there is a specific difference in the B dose starting to generate holes without annealing between Si and Ge; for Si, it is 3 × 10^{13} cm⁻² whereas for Ge, 1 × 10^{13} cm⁻², which is the lowest dose investigated in this experiment. Unlike the impurity-concentration profiles, the hole-concentration profiles at the dose of > 1 × 10^{13} cm⁻² are apparently asymmetrical with around R_p. The hole concentrations in the surface side (left side of broken line) are lower than those in the deeper side (right side of broken line).

The asymmetry of the hole-concentration profiles can be explained by the crystallinity: Figure 3 shows RBS spectra for aligned and random directions. The minimum yield x_{min} is estimated to be 0.74, indicating poor crystallinity. It is worth noting that this value is not local but the average one for Ge. The profiles of the crystallinity can be reproduced from the RBS spectra, revealing that the crystallinity rate of the surface side is lower than unity, indicating noncrystalline (Fig. 4). It is clear from the profiles of the crystallinity, the impurity concentration, and hole concentration that the low hole concentration in the surface side originates from the poor crystallinity, probably due to the implantation damage. Likewise, the tendency for the hole concentration to decrease with B dose can be understood in terms of the ion implantation damage. We note here that the profiles of hole concentration are asymmetrical at the hole concentrations of > 10^{20} cm⁻³ probably because of the ion implantation damage. If such a
high-hole-concentration is required, lower acceleration energy than 30 keV might be effective to suppress the damage. On the other hand, the crystallinity rate of the deeper side is nearly unity. Thus, it is obvious that high-hole-concentration layer was formed in the nearly crystalline deeper region even though high-dose B was implanted.

Combining the SIMS and SRP data allows us to examine the electrical activation behavior of B in Ge. Figure 5 shows the relationship between the impurity concentrations \(N_A \) and the hole concentrations \(p N_A \) at the depth where SRP was performed. The data for each activation ratio were interpolated from the SIMS data to enable comparison of the measurement results of the two methods at the same depth. The relationship describes almost on the same line of \(p/N_A < 1 \), suggesting the same activation ratio of less than unity in the wide range of impurity concentrations \((10^{16} \text{--} 22) \text{ cm}^{-2} \).

By analogy with the case of Si, the formation of B\(_{12}\) cluster in Ge is a possible model for the hole generation in B-implanted Ge without annealing. According to theoretical prediction, 3,4 B\(_{12}\) cluster in Si acts as a double acceptor. If the B\(_{12}\) clusters are fully electrically activated, then the activation ratio \(p/N_A \) is effectively regarded as 1/6 (=2/12). The data for each activation ratio fall on close to the solid line corresponding to the activation ratio of 1/6. This suggests that B\(_{12}\) clusters acting as double acceptor are formed without annealing in Ge as well as in Si.

Next, we investigated the annealing effect on the profiles of the B-implanted Ge. The profiles of the impurity concentrations [Fig. 6(b)] reveal that no diffusion of B occurred after annealing at 400-600°C, which is in complete contrast to P that easily diffuses in Ge.5 The corresponding hole-concentration profiles [Fig. 6(b)] show the different behaviors: The hole-concentration around the surface (left side of broken line) increases with annealing temperature. On the other hand, in the deeper region (right side of broken line), the hole-concentration profile shows no change. We consider that the annealing causes re-growth around the surface, thereby increasing hole concentration with temperature. On the other hand, the deeper region is nearly crystalline according to RBS (Fig. 4). Almost the same hole concentration in the deeper region implies the existence of thermally stable acceptors.

Here, we examine the influence of the implantation damage on the hole generation. Figure 7 shows the profiles of impurity concentration and carrier concentration of C-implanted Ge(100) without annealing, whose condition is the similar to that of B implantation \((1\times10^{16} \text{ cm}^{-2} \text{, 30 keV}) \). Since C has almost the same mass as B, C would cause almost the same damage as B. The profile of carrier concentration revealed that the holes were generated even in the C-implanted regions in Ge without annealing, though C is not dopant. This suggests that the defects in Ge behave as acceptors.6 However, the maximum hole concentration in C-implanted Ge without annealing is \(3\times10^{13} \text{ cm}^{-2} \), which is about five orders of magnitude lower than that of B-implanted Ge. This supports the view that B ions implanted into Ge behave as acceptors without annealing.

Finally, we confirmed the bonding states of B in Ge. Figure 8 shows the XPS spectra. The sputtering time of “w/o B” is longer than that of “with B”. Whereas no B 1s peak appeared in the case w/o B, B 1s was observed in the case with B. The B 1s peak seems to consist of two peaks at least (Inset in Fig. 8): a peak for three- and/or four-coordinate B \((\sim187\text{ eV})\) and a peak for B\(_{12}\) \((\sim188\text{ eV})\), by analogy with B\(_{12}\) cluster in Si.1,2

Thus, it is reasonable to suppose the formation of B\(_{12}\) cluster as a double acceptor in high-dose B-as-implanted Ge. On the other hand, the states of B in the case of low dose have not yet been clarified. Further work is needed to resolve this issue.

IV. Summary

Hole generation (max: \(\sim8\times10^{10} \text{ cm}^{-2} \)) in B-implanted Ge without annealing was observed. The activation ratio in the wide range of impurity concentrations \((10^{16} \text{--} 22) \text{ cm}^{-2} \) is almost the same value of 1/6. These results can be explained by assuming B\(_{12}\) cluster formation as a double acceptor in the as-implanted Ge.

Acknowledgments

This work was supported by NEDO.

References