# Qualitative Differences Between Conduction Band Edge Excitonic States and Electron Tapping in (i) $SiO_2$ and (ii) $Si_3N_4$ and Si Oxynitride Alloy Films

G. Lucovsky

North Carolina State University, Department of Physics 2401 Stinson Drive, Raleigh, NC 27695-8202, USA, \*Phone: +01-919-515-3938 E-mail: lucovsky@ncsu.edu

## 1. Introduction

The performance and reliability of a gate dielectric, (i) non-crystalline SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, a Si Oxynitride alloy, or (ii) a high- $\kappa$  transition metal oxide are determined by band edge intrinsic bonding states, intrinsic bonding defects and macroscopic strain. This paper addresses significant differences between band edge excitonic states in (i) SiO<sub>2</sub>, and (ii) Si<sub>3</sub>N<sub>4</sub> and Si oxynitride alloys, (Si<sub>3</sub>N<sub>4</sub>)<sub>X</sub>(SiO<sub>2</sub>)<sub>1-X</sub>, that provide an explanation for differences between symmetries of band edge states in SiO<sub>2</sub> and transition metal oxides also explain differences in TAT injection from negatively biased n-type Si substrates.

A connection between (i) strain-reducing medium range order (MRO), and (ii) nano-scale separation into *hard-soft* mixtures in non-crystalline SiO<sub>2</sub> is explained by many-electron theory applied to Si-atom "d-like states" [1] These states participate in O  $p\pi$  to Si d $\pi$ back-donation, yielding shortened Si-O bond-lengths and MRO atom-pair correlations. These bonding interactions identify a coherence length of ~1 nm associated with *hard* 6-member rings encapsulated by *compliant* or 5- and 7-member rings into a nano-grain *hard-soft* nano-structure, reducing macroscopic strain and giving SiO<sub>2</sub> unique reliability properties.

### 2. Experimental Procedures

Five nm thick films of SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub> and Si oxynitride alloys were remote plasma deposited on nitrided superficially oxidized Si(001). These films were annealed in Ar at a temperature of ~950°C. Si L<sub>2,3</sub>, and O and N K edge spectra were obtained by X-ray absorption spectroscopy (XAS) at the Stanford Synchrotron Research Lightsource (SSRL).

## 3. Experimental Results

Figure 1 compares the Si  $L_{2,3}$  spectra of noncrystalline SiO<sub>2</sub> and crystalline Si [2]. The band edge states in these two materials that comprise the Si-SiO<sub>2</sub> interface are "s-like" non-degenerate A<sub>1g</sub> states. Figure 2 is the 2nd derivative spectrum of the band edge states in non-crystalline, thin film plasma deposited SiO<sub>2</sub> that has been annealed at ~950°C. There is a oneto-one correspondence between the energy differences

in eV units of band edge states as determined by visible and vacuum UV spectroscopies, and in the O K edge spectra [1]. An X-ray energy of 529.25±0.1 eV corresponds to an energy of 8.9 eV for the band-gap of non-crystalline SiO<sub>2</sub>. In order of decreasing X-ray energy, and as marked in Fig. 2, the features in the O pre-edge derivative spectra correspond to: i) the bandgap,  $E_g$ , ii) two bound excitons,  $E_2$  and  $E_1$ , iii) negative ion states between 529.1 and 527.4 eV, and iv) four intra-d state transitions for the O-atom vacancy defect represented by a high-spin  $d^2$  state. The symmetries of these states are indicated using the Tanabe-Sugano diagrams. The combination of the localized A<sub>1g</sub> excitonic states at the SiO<sub>2</sub> band edge, and the  $A_{1g}$  and  $T_{2g}$  symmetries of unoccupied negative ion states of O-vacancy defects does not support radiative decay into the negative ion states. This is why TAT processes have not been reported for negatively biased n-type Si in Si-SiO<sub>2</sub> gate stack structures. In contrast, the combination of E<sub>g</sub> symmetries for band edge ZrO<sub>2</sub> and HfO<sub>2</sub> states, and  $A_{1g}$  and  $T_{2g}$  symmetries for unoccupied negative ion states of O-vacancy defects favors radiative decay into the negative ion states. This accounts for the TAT processes initiated by electron injection from n-type Si substrates that have been reported for ZrO<sub>2</sub> and HfO<sub>2</sub> MOS structures [3].

Figures 3 and 4 indicate respectively, (i) O K band edge, and pre-(band0 edge states of non-crystalline Si<sub>3</sub>N<sub>4</sub>, and expanded scale plots of the negative ion states of (ii) Si<sub>3</sub>N<sub>4</sub> and (ii) a (Si<sub>3</sub>N<sub>4</sub>)<sub>0.5</sub>(SiO<sub>2</sub>)<sub>0.5</sub> Si oxynitride alloy that has been used as alternative gate dielectric in the first eight to ten years of the 21st century. There is a significant qualitative difference between Fig. 2 for SiO<sub>2</sub> and Fig. 3 for Si<sub>3</sub>N<sub>4</sub> that is related to the difference in the number of p electrons in the ground states of O- and N-atoms, four for O, and five for N. This correlates with the singly occupied  $2p\pi$  state that gives rise to sharp spectral feature at 400 eV in Si<sub>3</sub>N<sub>4</sub>, and Si oxynitride alloys including compositions both SiO2-rich and Si3N4-rich as well. It is significant to note that the final state for the N-atom " $p\pi$  to  $p\pi$ " transition is at an energy that is between the band edge excitonic states of Si<sub>3</sub>N<sub>4</sub> and Si oxynitride alloys, and the negative ion states associated with N-vacancy defects in these dielectrics. This difference in the ordering of electronic states manifests itself in Si<sub>3</sub>N<sub>4</sub> dielectric thin films by promoting TAT and/or Poole Frenkel transport. The final state symmetry of the N-atom  $p\pi$  to  $p\pi^*$  transition provides a transport channel between the "s-like" symmetry of the band edge states, and the even symmetry of the negative ion states. In addition, it is likely that this state plays a role in the Negative Bias Temperature Instability that is much stronger in N-containing dielectrics than SiO<sub>2</sub>.

### **4.Summary of Significant Results**

The different symmetries of  $A_{1g}$  excitonic states at the SiO<sub>2</sub> band edge, and O-vacancy  $A_{1g}$  and  $T_{2g}$  unoccupied negative ion states effectively prevents injection into these negative ion states suppressing trap-assisted tunneling (TAT). The combination of  $E_g$ 





Fig. 3. N K edge and pre-edge spectra - Si<sub>3</sub>N<sub>4</sub>.

symmetry of  $ZrO_2$  and  $HfO_2$  band edge states, and Ovacancy  $A_{1g}$  and  $T_{2g}$  symmetries favors TAT for electron injection from n-type Si substrates [3]. The differences in O and N-atom p-states (4 vs. 5) results in a N-atom  $p\pi$  to  $p\pi^*$  transition sandwiched between the "s-like" symmetry of band edge states, and the even symmetry of N-vacancy negative ion states. This provides a "pathway" for TAT processes, well known in Si<sub>3</sub>N<sub>4</sub> and extending to Si oxynitride alloys as well.

#### References

[1] J.L. Whitten et al., J. Vac. Sci. Technol. B 20, 1710 (2002).

[2] F. deGroot and A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Boca Raton, 2008).

of transition metal ions, (Academic Press, New York, 1970). [3] G. Lucovsky et al., Solid State Electronics 53, 1273 (2009).



Fig. 2, Pre-edge O K spectra for nc thin film SiO<sub>2</sub>.



Fig. 4. Expanded x-axis N K pre-edge spectra.