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1. Introduction 

The remarkable advancement in semiconductor 
microfabrication technology makes the manufacturing of 
nanoscale devices possible, where nonequilibrium transport 
and quantum effects directly appear on the device 
characteristics. To design such ultrasmall devices at normal 
conditions, device simulation must reliably consider both 
quantum and scattering effects in carrier transport. 

Particle-based Monte Carlo (MC) solution of the 
Boltzmann transport equation (BTE) has been used to 
describe carrier transport within the semi-classical 
approximation. However, as quantum effects become more 
and more important with continued downscaling, the 
approach fails to describe the carrier transport accurately. In 
this study, we have developed a fully quantum MC 
simulator based on the Wigner transport formalism [1-4], 
and its ability for studying quantum and dissipative 
transport in Si leading-edge devices has been presented. 
 
2. Wigner MC Approach 

In the Wigner MC approach employed in this study, the 
equations-of-motion during a free flight are given by [3] 
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where V is the nonlocal potential describing quantum 
effects such as tunneling. Ai is an important variable called 
affinity [1], which gives wave natures of carriers into the 
ensemble MC technique. The Wigner MC approach has 
been applied to resonant-tunneling diodes, and successfully 
demonstrated that scattering-induced decoherence process 
diminishes resonant-tunneling phenomena [2,4]. 
 
3. Quantum Simulation of Si n-i-n Diode 

Fig. 1 shows the simulated Si n-i-n diode and 
conduction band structure. We considered intra-valley 
acoustic phonon, inter-valley phonons including f- and 
g-phonons, and impurity scatterings. Here, we emphasize 
that all of the simulated results are compared with those of 
the classic MC approach based on BTE, to clarify the 
influence of quantum effects. Fig. 2 shows the I-V 
characteristics computed for three channel lengths. It is 
found that the Wigner approach provides very close results 
to the Boltzmann approach for Lch = 10 nm and 7.5 nm, 
while it gives significantly larger current for Lch = 5 nm. To 
understand such behaviors of quantum I-V characteristics, 
we first plot the microscopic quantum features for Lch = 10 

nm in Fig. 3. It is found that the quantum carrier 
distribution (Wigner) increases in the channel due to 
tunneling effect as shown in Fig. 3 (b), and as a result the 
channel potential is elevated by its space charge effect as 
shown in Fig. 3 (a). Contrary to the channel electrostatics, 
the potential in electrodes slightly descends in the close 
vicinity of the channel. As clearly indicated in Fig. 3 (d), 
this is due to the expansion of carrier depletion region 
caused by nonlocal quantum repulsive force from the 
channel potential barrier. Furthermore, as shown in Fig. 3 
(c) the averaged carrier velocity decreases in the channel as 
compared with the Boltzmann approach, which is due to 
the fact that thermally-injected electrons have smaller 
kinetic energy because of the formation of higher potential 
barrier (Fig. 3 (a)), and that tunneling electrons travel more 
slowly than the thermally-injected ones. It is also worth 
noting that the averaged velocity drastically reduces in the 
second half of the channel, which is possibly due to a 
quantum reflection appearing in ballistic transport [5]. 
Indeed, by comparing the Boltzmann and Wigner 
distribution functions as plotted in Fig. 4, an interference 
pattern is observed in the Wigner result, which is the 
signature of ballistic transport with quantum reflection. It is 
interesting that the significant differences between the 
Boltzmann and Wigner approaches observed at the 
microscopic level are almost reduced at the macroscopic 
level in terms of terminal current [5]. 

Next, the microscopic quantum features for the shorter 
Lch = 5 nm are also examined as shown in Figs. 5 and 6. In 
this extremely scaled device, the slowdown associated with 
tunneling and quantum reflection is mitigated, and instead 
carrier acceleration occurs in the access source region as in 
Figs. 5 (c) and 6 (b), which is due to the electric field 
caused by the nonlocal carrier depletion effect. Thus, the 
increased carrier velocity and density in the channel 
produce larger current density than the Boltzmann approach 
for Lch = 5 nm as previously shown in Fig. 2. 
 
4. Conclusions 

We have shown that the Wigner MC technique is 
powerful in studying quantum and dissipative transport in 
nanoscale devices. In addition, the Wigner MC simulation 
has revealed that tunneling, quantum reflection and 
furthermore carrier transport in source region play an 
important role in Si devices scaled less than 10 nm. 
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Fig. 1 (a) Simulation model of Si n-i-n diode and (b) Si conduction band
structure. The ellipsoidal multi-valleys and its band nonparabolicity are taken
into account. The channel length Lch is varied from 5 to 10 nm. 
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Fig. 3 (a) Potential, (b) carrier density and (c) averaged carrier velocity
distributions computed at V = 0.5 V. Lch = 10 nm. (d) represents the magnified
carrier density distributions around the source/channel and channel/drain junctions.
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Fig. 5 (a) Potential, (b) carrier density and (c) averaged carrier velocity
distributions computed at V = 0.5 V. Lch = 5 nm. (d) represents the magnified carrier
density distributions. 
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Fig. 2 I-V characteristics computed by using
Boltzmann and Wigner MC methods for Lch = 5,
7.5 and 10 nm. 
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Fig. 4 Distribution functions in phase space
computed by using (a) Boltzmann and (b) Wigner
MC methods. V = 0.5 V and Lch = 10 nm. Numbers,
1, 1’, 2, 2’, 3 and 3’ in (a) correspond to the valley
numbers in Fig. 1 (b). In (b), the distribution
function is inseparable into each valley. 
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Fig. 6 Distribution functions in phase space 
computed by using (a) Boltzmann and (b) Wigner 
MC methods. V = 0.5 V and Lch = 5 nm. 
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