Heavily-Doped Poly-Si Gate and Epi-First Source/Drain Extension Technique in Strained Si Nanowire MOSFETs with Reduced Parasitic Resistance

Yukio Nakabayashi¹, Masumi Saitoh¹, Takamitsu Ishihara¹, Toshinori Numata¹, Ken Uchida², and Junji Koga¹ ¹Advanced LSI Technology Laboratory, Corporate Research and Development Center, Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8522, Japan, ²Tokyo Institute of Technology, Phone: +81-45-776-5815 E-mail: yukio1.nakabayashi@toshiba.co.jp

1. Introduction

Nanowire field-effect-transistors (NW FETs) are regarded as promising candidates for ultimate scaling [1]. In order to obtain high performance NW FETs for practical use, reducing parasitic resistance (R_{SD}) [2,3] and enhancing inversion-layer mobility (μ) [4] are essential (Fig.1). We reported the large R_{SD} reduction by means of raised source/drain (S/D) extensions with thin gate spacer, achieving higher I_{on}/C_{inv} than the previous NW FETs with epi S/D [5]. However, further R_{SD} reduction is still required for high performance Si LSI. For μ enhancement, on the other hand, applying strain to NW channel region is necessary in addition to the surface orientation engineering [6]. However, the μ enhancement technique for NW FETs is still insufficient.

In this paper, we demonstrate further I_{on} improvement by *Epi-first* S/D extension process. In addition, we successfully obtained I_D enhancement due to the compressive strain applied from heavily-doped poly-Si gate.

2. NW FETs Fabrication

Tri-gate NW FETs were fabricated on (100) SOI wafers. Fig.2 shows the key process flow. Channel direction/side-surface-orientation is <110>/(110) or <100>/(100). Gate stack is composed of poly-Si and SiO₂ with T_{OX} of 3 and 4nm. Gate pre-doping with high or low dose were performed. The dopants were P, As, and B. After definition of gate and SiN offset spacers, selective epitaxial growth (SEG) of Si on NW S/D was performed prior to extension ion-implantation (Ext. I/I), which we call Epi-first S/D extension process. Figs.3(a) and (b) show TEM images of <110> NW channel and S/D region with SEG, respectively. While the conventional Ext. I/I-first S/D process like bulk planar FETs requires low dose and low energy ion-implantation to keep crystallinity of Si NW S/D, defect-free S/D SEG was successfully fabricated through the Epi-first S/D extension process even with high dose and high energy ion-implantation.

3. Results and Discussion

A. Epi-first S/D Extension

Fig.4 shows I_D - V_G characteristics with V_D of 10 mV. I_D of Epi-first NW FETs has 1.8 times higher than that of the conventional Ext. I/I-first NW FETs. In R_{lin}-L_G plots (Fig.5), R_{lin} of Epi-first NW FETs is smaller than that of Ext. I/I-first NW FETs. It is also confirmed that the variability of R_{lin} is suppressed in Epi-first NW FETs with short L_G , because SEG of S/D was uniformly formed. High dose and high energy Ext. I/I in Epi-first NW FETs fabrication leads to the low-resistivity extension region with large amount of dopants (Fig.6). The fact suggests that effective gate length (Leff) of Epi-first NW FETs was shortened against L_G due to thin gate spacer used in this experiment. In order to compare the R_{lin} under the same short-channel-effect (SCE), Fig.7 shows the relationship between R_{lin} and DIBL. As DIBL becomes large, R_{lin} decreases drastically due to the reduction of the channel resistance. The minimum R_{lin} of Epi-first NW FETs, which is almost corresponding to R_{SD}, is lower than that of Ext. I/I-first NW FETs. At the same DIBL of 100 mV/V, 37% R_{lin} reduction was achieved in Epi-first NW FETs. Furthermore, 40% ID lin enhancement was obtained at I_{off} of 1 nA/µm (Fig.8). These results indicate that Epi-first S/D extension process to increase S/D impurity is indispensable process for large R_{SD} reduction of short-channel NW FETs. Therefore, low R_{SD} and acceptable SCE could be realized by optimizing the spacer width in the *Epi-first* NW FETs. In I_{on} - I_{off} plots (Fig.9), I_{on} of the *Epi-first* NW FETs increases 20% at I_{off} of 1 nA/µm.

B. Heavily-doped Poly-Si Gate

Fig.10 shows I_D - V_G characteristics of Si NW FETs with highand low-doped poly-Si gate. These NW FETs were fabricated on the same wafer with changing gate pre-doping conditions to eliminate the wafer-to-wafer fluctuation. It is found that the I_D of As- and P-doped poly-Si gate are higher than that of B-doped gate despite the same dose. Furthermore, I_D of the As- and P-doped gate are increased by heavy doping, while no enhancement is observed in NW FETs with heavily-B-doped gate. In the W_{NW} dependence of the I_D enhancement (ΔI_D) of high- to low-dose gate (Fig.11), ΔI_D increases with narrow W_{NW} less than 40nm. ΔI_D also increases with short L_G (Fig.12).

Fig.13 shows the ΔI_D of <110> and <100> NW FETs. The W_{NW} dependence of the ΔI_D shows the same tendency in both channel direction. It is found that ΔI_D in <110> is larger than that in <100>, suggesting the channel direction dependence of ΔI_D induced by the strain. Fig.14 shows the μ change by 0.1% normal compressive strain to top NW surface and 0.1% horizontal compressive strain to side surfaces extracted from substrate bending [5]. While the μ change of top surface in both <110> and <100> nFETs are the same, (110) side surface has large μ increase. The higher ΔI_D in <110> nFET than that in <100> nFETs suggests Asand P-doped poly-Si gate induce the compressive strain to the NW channel. ΔI_D increase against W_{NW} (Fig.11) means the strain enhancement in narrow W_{NW} . In cross-sectional TEM image of NW FETs (Fig.15), the poly-Si grain boundary is observed at the corner to surface. As reported [7], high P concentration forms the vacancy in Si lattice and excess Si atoms stabilize at grain boundary or surface. The re-growth of poly-grain could induce outward stress, leading to the compressive stain to the NW channel.

Moreover, tensile-stress liner was formed in heavily-doped poly-Si NW FETs. It is confirmed that the tensile-stress liner enhances I_D of NW nFET with the low-dose gate (Fig.16). In L_G dependence of I_D enhancement ratio (ΔI_D) by tensile stress liner with As- and B-doped gate (Fig.17), As-doped gate NW nFETs becomes larger than B-doped gate at short L_G . ΔI_D of As-doped poly-Si gate is slightly higher than that of B-doped one, irrespective of W_{NW} (Fig.18). Fig.19 summarizes the I_D enhancement due to the tensile-stress liner and the heavily-doped poly-Si gate. The I_D enhancement is extracted from the I_D difference from the NW FETs with B-doped poly-Si gate and neutral liner. It is found that longitudinal tensile strain by the stress liner and vertical compressive strain by heavily-doped poly-Si gate are additive and 43% I_D enhancement is achieved in short L_G .

Conclusions

We achieved R_{SD} reduction and I_{on} enhancement in NW FETs with *Epi-first* process and compressive stress induced by heavily-doped poly-Si gate. 20% I_{on} enhancement was obtained compared to conventional *Ext. I/I-first* process. Heavily-doped poly-Si gate process is additive to tensile stress liner. This stress technique can be applicable to poly-Si/metal stacked gate NW FETs. Acknowledgements: This work was partly supported by NEDO's Development of Nanoelectronic Device Technology.

References:[1] K.H.Yeo et al., IEDM2006, p.539. [2] H.S.Wong et al., VLSI2009, p.92. [3] S.Bangsaruntip et al., IEDM2009, p.297. [4] J.Chen et al., VLSI2008, p.32. [5] M.Saitoh et al., to be presented at VLSI2010. [6] M.Saitoh et al., VLSI2008, p.18. [7]A.F.W.Willoughby, "Double-Diffusion Process in Silicon" in F.F.Y.Wang, Ed., Impurity Doping Process in Silicon (1981).

 V_{G} V_h(V) L_{G} (m) C_{g} characteristics with or Fig.17 L_{G} dependence of ΔI_{D} Fig.16 ID-VG without tensile SiN liner. H_{NW} =14nm. $W_{NW}=21$ nm.

induced by tensile strain.

W_{NW} (nm) Fig.18 W_{NW} dependence of ΔI_D by tensile strain. Fig.19 L_G (am) Fig.09 gate NW FETs. Effects of

As-doped and tens. strain is additive.