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Introduction

SOTB (silicon on thin box) MOSFET presents an ex-
cellent immunity to SCEs (short channel effects) regard-
less of low or even intrinsic channel doping concentration.
As a result, reduced RDF (random dopant fluctuation) and
enhanced mobility can be obtained. Together with proper
back-gate bias scheme (to control the threshold voltage
and power consumption), SOTB may be an attractive
choice for some nano-scale applications (e.g. ultra-low
standby-power application) [1]. However, it also has
some disadvantages like large parasitic capacitance, espe-
cially when ground plane (GP) is adopted to suppress the
DIBL effect. Variable-body-factor (or variable-y) SOTB
is a new device concept proposed by [2], which uses a
side-gate bias to control body-factor (y) to obtain a better
performance (e.g. reduced parasitic capacitance and im-
proved drive current, .etc) compared to conventional
SOTB. The introduction of side-gate has a drawback of
enlarged area, which can be minimized by layout design
[2]. Besides, it also disturbs the device’s variability per-
formance, which has not been studied yet. In this work,
we systematically investigated the influences of LER
(line-edge-roughness), WFV (work-function variation)
and STV (silicon-layer thickness variation) on 20-nm-gate
SOTB MOSFETs. Since intrinsic channel has been used,
RDF is not considered here.

Simulation Method

Fig.1 (a) shows the simulated variable-y SOTB MOS-
FET structures. Fig.1 (b) shows the metal gate work-
functions of different grain orientations. Corresponding
device parameters are listed in Fig.1 (c). Fig.1 (d) illu-
strates the fluctuation sources respectively. A Fourier
analysis of the power spectrum of Gaussian autocorrela-
tion function is employed to simulate LER (A=1.5nm and
A=20nm) [3]. The silicon layer thickness tolerance is tak-
en as 10% [4]. The work-function distribution is modeled
as a probabilistic one, as explored in [5][6]. The ISE
TCAD tools [7] have been used to implement our simula-
tions, each of which has a sample size of 100. Quantum
effect is taken in to account by the density-gradient me-
thod. The threshold voltage is extracted by the constant
current method (1.5 x107A and 0.5 x10”A for n and p
channel devices, respectively).

Results and Discussion

Fig.2 shows the tuning effect of side-gate bias on
body-factor (simply defined as |AViu/AViack-gate] OF Cho-
dy/Ceate [2]) of n-SOTB. When the side-gate is positive bi-
ased, it will collect the inverted carriers under the box
(electron for n-SOTB) and thus keeps the substrate dep-
leted, leading to a reduced y as well as lowered threshold
voltage (Vy). The circled two points donate the selected
work state (standby/active state [2]) in this work. Fig.3-5
show fluctuations of Vy;, (active state Vy, extracted at
[V4s|=0.05 V), Vg (active state Vy, extracted at [V|=0.9V)

and DIBL (|Vyin- Visa|/0.85). Dashed lines indicate values
of conventional SOTB MOSFETs. As we can see, WFV
dominates oVy;, while LER stands out at high drain bias,
both for n- and p-SOTB, indicating that LER causes a
strong fluctuation of DIBL as illustrated in Fig.5. A com-
parison between variable-y and conventional SOTB de-
monstrates that side-gate bias reduces the Vy,-roll-off (see
Fig.3) while, however, causes a larger cDIBL (see Fig.5)
at active state. This is because the side gate helps to dep-
lete the substrate, and thus reduces the charge share effect.
Meanwhile, the depleted substrate strengthens the fring-
ing field induced by drain and source through the buried
box and substrate [8], leading to a deteriorated DIBL.
Fig.6-7 show ol,, and cLog(L) respectively. LER causes
largest ol,, and cLogl.; of n-SOTB while LER and WFV
together dominate that of p-SOTB. Fig. 8 shows fluc-
tuated dependence of gate capacitance (C,) on gate bias
(V). LER, STV and WFV impact such cC,-V, relation
differently, as illustrated in Fig.9. For n-SOTB LER do-
minates 6C, both at V, =0.45V and 0.9V. For p-SOTB
LER and WFV impact 6C, at V, =-0.45V comparably
while the high gate bias apparently reduces WFV-induced
6C, due to the screening effect of the inversion layer [6].
Considering that such kind of variable-y SOTB MOSFET
is attractive to application of logic circuit, we investigated
its inverter delay-time (t;) variability performance, as
shown in Fig.10. As we can see, LER causes a variation
of more than 10% both for ty;, and t yy and beyond this
WFV also introduces equally ot 3 compared to LER. STV
causes least variation of ty; and ty.

Conclusions

In this study, we have investigated the influences of in-
trinsic parameter fluctuations in 20-nm-gate variable-y
SOTB MOSFETs. Our results show that side-gate bias
impacts Vg-roll-off and cDIBL oppositely. LER is the
most important fluctuation source both for n- and p-type
variable-y SOTB. Effect of WFV is starting to outstand in
a scale of 20nm, especially in p-type. If STV follows the
requirements of [4], it would not become a challenging
problem compared to LER and WFV.
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selected work states (standby/active state)
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Fig.8 Disturbed dependence of C, on V,
for variable-y n- and p- SOTB MOSFETs.
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Fig.9 C, fluctuation for variable-y n- and  Fig.10 Inverter delay fluctuation for
p- SOTB MOSFETSs under different V,

variable-y n- and p- SOTB MOSFETs.
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