Experimental Study of PVD-TiN Gate with Poly-Si Capping and Its Application to 20 nm FinFET Fabrication

T. Kamei¹, Y. X. Liu², K. Endo², S. O'uchi², J. Tsukada², H. Yamauchi², Y. Ishikawa², T. Hayashida¹, T. Matsukawa²,

K. Sakamoto², A. Ogura¹, and M. Masahara²

¹ Meiji University, ² National Institute of Advanced Industrial Science and Technology (AIST)

Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan, Tel: +81-29-861-3417, E-mail: <u>yx-liu@aist.go.jp</u>

1. Introduction

Recently, as one of the promising metal gate materials, PVD-TiN has actively been used in the undoped channel FinFET fabrication because its midgap work function offers a symmetrical threshold voltage (V_{th}) without channel doping [1-5]. However, the electrical characteristics of scaled PVD-TiN gate FinFETs including the V_{th} variability and mobility have not been investigated sufficiently.

In this paper, we present the detailed comparison of the V_{th} variations and mobilities of the fabricated n⁺-poly-Si gate and PVD-TiN gate FinFETs with a (111)-oriented channel surface, and discuss the superiority of the PVD-TiN gate with n⁺-poly-Si capping.

2. Device fabrication

Figure 1 shows the abbreviated device fabrication flow. Except the gate stack deposition and RTA steps, the devices were fabricated with the same process. Si-fin channels were fabricated by using the orientation-dependent wet etching on the (110) SOI wafers [1]. After the gate oxidation, a 100-nm-thick n^+ -poly-Si layer was deposited as a gate material for type-A samples, and 20-nm-thick PVD-TiN & 100-nm-thick n^+ -poly-Si layers were continuously deposited for type-B samples. After the ion implantation (I/I) and a 100-nm-thick CVD-SiO₂ layer deposition, RTA was performed at 900 °C for type-A and 830 °C for type-B devices with the same time of 2 s.

3. Experimental results and discussion

The SEM image of the fabricated n⁺-poly-Si gate FinFET is shown in Fig. 2. It is clear that 20-nm gate (L_g) is successfully fabricated. The cross-sectional STEM images of the fabricated FinFETs are shown in Figs. 3. Note that ideal rectangular cross-section Si-fins are formed uniformly thanks to the orientation-dependent wet etching.

Figures 4(a) and 4(b) show the typical I_{d} - V_g characteristics of the fabricated FinFETs with $L_g = 20$ and 40 nm, respectively. Note that $L_g = 20$ nm FinFETs show normal transistor characteristics although the S-slope and DIBL are slightly larger than those of $L_g = 40$ nm devices. Moreover, it is clear that symmetrical I_d - V_g curves are obtained by introducing PVD-TiN gate instead of the n⁺-poly-Si gate thanks to the midgap work function of PVD-TiN gate. Figure 5 summarizes the measured V_{th} and S-lope at $V_d = 0.05$ V. It can be seen that V_{th} and S-slope keep almost constant values at $L_g > 50$ nm, indicating a good short-channel effects (SCEs) immunity. To suppress the SCEs at $L_g < 50$ nm, a thin gate sidewall spacer is required before source-drain (SD) extension I/I process [6], which is under development.

Figure 6 shows the device dimension variations including Si-fin

thickness (T_{Si}) and L_g by SEM. Average $\langle T_{Si} \rangle \& \langle L_g \rangle$ are 23.4 and 100.8 nm, and the small $\sigma T_{Si} = 3.7 \& \sigma L_g = 3.6$ nm are obtained by optimizing fabrication process. The measured I_d-V_g characteristics of the fabricated n-channel FinFETs with the same $\langle L_g \rangle = 100.8$ nm are shown in Fig. 7(a), and the corresponded statistical V_{th} variations are shown in Fig. 7(b). It is clear that almost the same σV_{th} is obtained in the cases of n⁺-poly-Si gate and PVD-TiN gate. Such result is further confirmed in the case of L_g = 150 nm as shown in Fig. 8. Thus, it is concluded that PVD-TiN gate enables to set a symmetrical V_{th} for undoped channel FinFET CMOS without increasing V_{th} variations.

In order to evaluate carrier mobility, split C-V of the fabricated multi-FinFETs was measured as shown in Fig. 9. The measured mobility data are shown in Fig. 10. Note that the measured mobility data of the n^+ -poly-Si gate and PVD-TiN gate show almost the same values, and the electron mobility data show good agreement with the universal mobility curve of the (111) bulk MOSFETs [7, 8], due to the damage-free Si-fin channels by the wet process. Furthermore, it can be confirmed that n^+ -poly-Si capping on 20-nm-thick PVD-TiN layer is very effective to improve mobility both for electrons and holes compared to the pure 50-nm-thick PVD-TiN gate without n^+ -poly-Si capping. Such mobility improvement is possibly resulted from the retardation of PVD-TiN induced mechanical stress [9] by introducing a thin 20 nm PVD-TiN and a thick 100 nm n^+ -poly-Si capping layer.

4. Conclusion

We have comparatively investigated the electrical characteristics including V_{th} variability and mobility by fabricating a series of n⁺-poly-Si and PVD-TiN gate FinFETs, and demonstrated 20 nm L_g FinFETs. It was experimentally found that 20-nm PDV-TiN with n⁺-poly-Si capping is very effective to set a symmetrical V_{th} for undoped FinFET CMOS without σV_{th} and mobility degradations compared to n⁺-poly-Si gate FinFETs. The developed PVD-TiN gate technology is very useful for the scaled FinFET circuit fabrication.

Acknowledgements

This work was supported in part by the Development of Nanoelectronics Device Technology of NEDO Japan.

References

- [1] Y. X. Liu et al., IEDM Tech. Dig. (2006) 989.
- [2] K. Endo et al., IEDM Tech. Dig. (2008) 857.
- [3] S. O'uchi et al., IEDM Tech. Dig. (2008) 709.
- [4] T. Matsukawa et al., VLSI Tech. Dig. (2009) 118.
- [5] Y. X. Liu et al., VLSI Tech. Dig. (2010).
- [6] S. Cho et al., Ext. Abstr. SSDM (2009) 380.
- [7] S. Takagi et al., IEEE Trans. ED. 41 (1994) 2363.
- [8] H. Irie et al., IEDM Tech Dig. (2004) 225.
- [9] T. Guillaume et al., IEEE Int. SOI Conf. (2004) 43.

Fig. 9. C_{gc} - V_g characteristics of the fabricated multi-FinFETs with 50-fins and $L_g = 20 \ \mu m$.

Fig. 10. Comparison between measured (a) electron and (b) hole mobility data of the multi-FinFETs and universal mobility data of (111) bulk MOSFETs.