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1. Introduction 

The successive fabrication of graphene devices [1,2] 
has initiated intensive and diverse research on carbon re-
lated systems. The honeycomb crystal structure of single 
layer graphene consisting of two nonequivalent sublattices 
conducts a unique band structure for the itinerant 
π-electrons near the Fermi energy, where the conduction 
band conically touches with the valence band, resulting in 
linear energy spectrum proportional to the momentum. The 
low-energy physical properties are formally described by 
“relativistic” massless Dirac equation [3], which makes 
strong contrast to the electronic properties of ordinary 
two-dimensional electron gas. In graphene, the presence of 
edges can have strong implications for the spectrum of the 
π-electrons. In graphene nanoribbons with zigzag edges, 
localized states appear at the edge with energies close to the 
Fermi level [4,5,6]. In contrast, edge states are absent for 
ribbons with armchair edges. Recent experiments have 
confirmed the existence of the edge states [7,8], and further 
succeeded to synthesize graphene nanoribbons using litho-
graphy techniques [9,10] and chemical tech-
niques.[11,12,13] In this paper, we discuss the electronic 
properties of graphene nanoribbons and nanojunctions.  
 
2. Electronic States of Graphene Nanoribbons 
  We describe the electronic states of graphene and 
nanoribbons by the tight-binding model. The schematic 
figures of graphene nanoribbons are shown in Fig.1(a) and 
(b). The corresponding energy band structures for suffi-
ciently wide nanoribbons (N=50) are depicted in Fig.1(c) 
and (d). Here the parameter for energy (γ) is the transfer 
integral between nearest neighbor carbon sites, and is ex-
perimentally estimated about 2.75eV. In both figures, the 
subbands for E<0(E>0) correspond to valence (conduction) 
band. The Fermi energy comes to E=0. The detail and 
pedagogical derivation for energy band structures and 
wavefunctions with explicit analytic form can be found in 
ref.[14] 
  The k-linear spectrum, which is signature of massless 
Dirac electron, appears at k=0 for armchair nanoribbons. 
Also, zigzag nanoribbons also have such linear band at 
k=2π/3 and -2π/3. However, the partial flat bands appears 
in the region of 2π/3<|k|<π, due to the edge states where the 
electrons are strongly localized near the zigzag edges. Since 
such edge states make a large peak in the density of 
states(DOS) around the Fermi energy, the existence of zig-
zag edges gives strong impact on the electronic properties 

of graphene nanomaterials. Actually, the edge states might 
be responsible for unusual magnetic properties such as 
spin-polarized edge states[4,15], para- to dia-magnetism 
crossover[6], and half-metallic behaviors[16]. 
 

 

 
 
 
 
 
 
 
3. Perfectly Conducting Channel 
  The presence of the partial flat bands due to edge states 
are not only important for magnetic properties, but also for 
electronic transport properties. Since graphene nanoribbons 
can be viewed as a new class of carbon-based quantum 
wires, one might expect that random impurities inevitably 
cause Anderson localization, i.e. conductance exponentially 
decays with increasing system length L and eventually van-
ishes. However, we can show that zigzag nanoribbons with 
long ranged impurities (LRI) possess a one perfectly con-
ducting channel (PCC), i.e. the absence of Anderson local-
ization, due to the chiral mode originating graphene edge 
states[17,18].  
  Using Landauer approach, we numerically show the 
presence of PCC in disordered graphene nanoribbons sub-
jected to LRIs as shown in Fig.2(a) and (b).  In clean limit 
(L->0), the conductance (g) in the unit of quantum conduc-
tance (g0=2e2/h) has the following quantization rule meas-
ured from E=0: 
   g = 2 n + 1, n=0,1,2,…  
Actually we can confirm this quantization behavior in 
Fig.2(b) at L=0. The introduction of impurities ( increasing 
L ) make the decay of conductance, however, the conduc-
tance converges to 1 in the large L limit, i.e. at least one 
channel is perfectly conducting even in the dirty limit. The 

Fig 0: Schematic figures of (a) armchair and (b) zigzag 
nanoribbons. The rectangles with dashed lines indi-
cate the unit cell. The energy band structure with the 
density of states (DOS) for (c) armchair and (d) zigzag 
nanoribbons (N=50). 
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origin of PCC is the channel imbalance induced by the ex-
istence of subband due to the edge states, where the 
left-going channel has one excess channel. 
  In armchair nanoribbons, the single-channel transport 
subjected to long-ranged impurities is nearly perfectly 
conducting, where the backward scattering matrix elements 
in the lowest order vanish as a manifestation of internal 
phase structures of the wavefunction[18,19]. However, 
since the intervalley scattering detrimentally dominates the 
electronic transport in armchair nanoribbons, such nearly 
perfectly conduction is available only in narrow metallic 
armchair nanoribbons[19,20] 
 

 
 
 

 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Electronic Transport through Junctions 
  Since the low-energy electronic properties depend on the 
edge structures, the behavior of conductance can be tuned 
and designed by introducing the nanojunction struc-
tures[21,22]. In Fig.3, we show some typical junction 
structures [(a) and (b)], the (c) corresponding energy de-
pendence of conductance  and their phase of transmission 
coefficient[(d)]. As can be seen in Fig.3(c), the 
zero-conductance anti-resonances can appear depending on 
the junction structure. The junctions with zigzag edge have 
always anti-resonances in spite of that AA junction does not 
show such anti-resonance. Therefore, the origin of the 
resonances can be attributed to the coupling between zigzag 
edge localized stated and continuum extended states, i.e. 
Fano resonances. This fact can be confirmed by looking at 
the phase of the transmission coefficient, which jumps by p 
at the energies that the anti-resonance occurs. Thus, tuning 
either the Fermi energy or local gate voltage can switch 
between two states, i.e., zero-conductance state (g=0) and 
nearly perfect transmission state (g=1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3 Schematic figures of graphene nanojunctions 
with (a) zigzag-zigzag (ZZ) cutting and (b) arm-
chair-armchair cutting. (c) The Fermi energy de-
pendence of the corresponding dimensionless conduc-
tance and phase of transmission coefficient. 
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Fig 2 (a) Schematic figures of graphene nanorib-
bons subjected to LRIs. (b) L-dependence of av-
eraged conductance. <g> converges to 1 in the 
large L limit. 
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