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1. Introduction 

Spin-polarized light-emitting diodes (spin-LEDs) rep-
resent one of the most powerful tools for analyzing electri-
cal spin injection into semiconductors [1, 2]. Inserting a 
thin insulating layer between the 3d-ferromagnetic (FM) 
metal and semiconductor layers has great potential for 
achieving effective spin injection even at room temperature 
(RT). AlOx [3-5] and MgO [6, 7] have attracted a great deal 
of attention as tunnel-barrier materials. However, the inter-
face between these oxides and GaAs has quite high recom-
bination velocities for GaAs-based semiconductors[8], re-
sulting in much lower charge-injection efficiency than that 
of ohmic injectors [5,  9]. Conventional oxide GaOx would 
be a good candidate for the high-quality tunnel-barrier ma-
terial [8]. Our previous electroluminescence (EL) study 
revealed that the charge-injection efficiency of an Fe/GaOx 
injector is comparable to that of the conventional ohmic 
injector of Fe/n+-AlGaAs [9]. In this study, the circular po-
larization-dependent EL measurements were conducted by 
using spin-LEDs with the Fe/GaOx tunnel injector [10].  
 
2. Experiments 

The film for the spin-LEDs was grown by molecu-
lar-beam epitaxy (MBE). The film structure was a Au (5 
nm)/Fe (5 nm)/GaOx (4 nm)/n-Al0.2Ga0.8As (100 nm, n= 5  
1016 cm-3)/ Al0.2Ga0.8As (10 nm)/ GaAs quantum well (QW) 
(10 nm)/ Al0.2Ga0.8As (20 nm)/p-Al0.2Ga0.8As (200 nm, p = 
1  1018 cm-3)/p-GaAs (001) (p  1  1018 cm-3) substrate. 
Surface emitting spin-LEDs with an active area of 150  
150 m were prepared with conventional micro-fabrication 
techniques. 
 
3. Results 

Figure 1 shows a high-resolution cross-sectional 
transmission electron microscopy (TEM) image of the 
Au/Fe/GaOx/(Al)GaAs layers. The image reveals that the 
GaOx layer is amorphous and the Fe layer is polycrystalline, 
which are both consistent with the RHEED observa-
tions.[9,11] No interdiffusion was identified at either of the 
GaOx/AlGaAs or the GaOx/Fe interfaces. 

Figure 2 shows the left (+) and right () circular po-
larization components of the EL spectra at 2 K under mag-
netic fields of 0 and 3 T. At a zero magnetic field, no dif-
ferences were confirmed in the intensity of either of the 

components. It should be noted that a remarkable difference 
appeared between the + and  components at 3 T, sug-
gesting that the injected electrons are highly spin-polarized. 
The dependence of magnetic field on the Pcirc is plotted in 
Fig. 3. Here, the Pcirc is defined as (I+ I)/(I++ I), where I+ 
and I are the intensity of the + and  components of the 
free exciton peak. The Pcirc roughly tracks the magnetiza-
tion measured in a perpendicular magnetic field with a 
SQUID magnetometer, indicating that the observed Pcirc 
was derived from the Fe electrode. With increasing mag-
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Fig. 1 Cross-sectional TEM image of Au/Fe/GaOx/(Al)GaAs
layers [10].
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Fig. 1 Left (+) and right () circular polarization 
components of EL spectra at 2 K. [10]
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Fig. 1 Left (+) and right () circular polarization 
components of EL spectra at 2 K. [10]
Fig. 2 Left (+) and right () circular polarization 
components of EL spectra at 2 K. 

1.530 1.535 1.540 1.545 1.550 1.555

 +

 -


0
H = 3 T


0
H = 0 T

T = 2 K
 I = 30 A
V = 1.97 V

 

 

In
te

ns
ity

 (
ar

b.
un

its
)

Photon energy (eV)

Fig. 1 Left (+) and right () circular polarization 
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Fig. 1 Left (+) and right () circular polarization 
components of EL spectra at 2 K. [10]
Fig. 2 Left (+) and right () circular polarization 
components of EL spectra at 2 K. [10]. 
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netic field, the Pcirc increased rapidly and saturated at about 
20  above 2 T, which corresponds to the demagnetizating 
field of the Fe layer. Adopting the reported value of τre / τs  
1 at low temperatures [12], the Pspin [= Pcirc (1 + τre / τs) ] 
was roughly estimated to be 40 , which is in excellent 
agreement with the expected value. This indicates that 
GaOx is an important tunnel-barrier material for developing 
GaAs-based spintronic devices. 
   
4. Conclusions 
   We examined the electrical injection of spin-polarized 
electrons into a GaAs-based light-emitting diode structure 
from a Fe/GaOx tunnel injector whose electron-charge in-
jection efficiency was comparable to that of a conventional 
Fe/n+-AlGaAs ohmic injector. A high circular polarization 
of electroluminescence up to 20  was obse rved at 2 K. 
The combination of effective spin- and charge-injection 
efficiencies makes GaOx a promising tunnel barrier for 
GaAs-based spintronic devices. 
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Fig. 3 Dependence of Pcirc on magnetic field at 2 K. 
The solid line plots the magnetization curve of the film 
for the spin-LED at 6 K, which has been scaled to 
allow comparison with Pcirc. [10].
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