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1. Introduction 

Multi-physics simulation for MEMS (microelectrome-
chanical systems) is becoming an indispensable tool to 
comprehend the behavior of the system under test, where 
electrical and mechanical coupled response should be ana-
lyzed simultaneously [1]. In the conventional design pro-
cedures, however, micro mechatronics and electronics were 
designed independently by using separate simulation tools 
except for a few examples that were limited to small-dis-
placement analysis only [2]. Apart from this, we have 
adopted an approach to develop a co-solver for the me-
chanical equation of motion (EOM, Fxkxcxm =⋅+⋅+⋅ &&& ) 
by using a circuit simulator, which enables us to perform 
multi-physics simulation in both small and large signal 
domains on a single simulator platform [3]. In this late 
news, we report a SPICE version of such multi-physics 
solver that is capable of microelectromechanical transient 
analysis, AC harmonic analysis, and electro-mechanical 
mixed-signal simulation that can be performed seamlessly 
with the LSI simulation. 
 
2. Co-solver for Equation of Motion 

Figure 1 illustrates the model for a typical electrostatic 
micro actuator with a pair of parallel plates that are electri-
cally biased to generate electrostatic attractive force 
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where S, V, g, and x are the plate area, the drive voltage, the 
initial gap, and the displacement of the movable plate, re-
spectively. Mechanical displacement at the equilibrium 
condition is calculated by equating (1) with the mechanical 
viscoelastic force 
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where c and k are the damping coefficient of the dash pod 
and the spring constant of the suspension, respectively. In 
our work, these components are visually presented as 
sub-circuits as shown in Fig. 2. The EOM co-solver module 
inserted between the viscoelastic suspension and the elec-
trostatic actuator is programmed to calculate the resultant 
displacement and velocity as a function of the impinging 
forces, in a similar manner as an analog computing circuit. 

GND

k

g  - x

x

V

ε0

Spring
Constant

Displacement

S

Initial Gap

Plate Area

Drive Voltage

m
Mass

R Electrical
Resistance

GND

VB

VA

i

(VA = 0)

Mechanical Anchor

Damping
Coefficient

c

Voltage

Voltage

QA

QB

GND

k

g  - x

x

V

ε0

Spring
Constant

Displacement

S

Initial Gap

Plate Area

Drive Voltage

m
Mass

R Electrical
Resistance

GND

VB

VA

i

(VA = 0)

Mechanical Anchor

Damping
Coefficient

c

Voltage

Voltage

QA

QB

0

0

x
v

Initial Position

Initial Velocity

 
Fig. 1  Schematic model for a parallel-plate electrostatic micro 
actuator 
 

 
Fig. 2  LTspice simulation circuit for transient analysis. 
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Fig. 3  Generalized sub-circuit model for the EOM co-solver 

 
Figure 3 is the kernel of the EOM co-solver that reads 

in the multiple signals such as the actuator’s drive force and 
suspension’s restoring force. Mechanical equation of mo-
tion is a second-order differential equation, and it can be 
processed in an integral form through a series of integrators 
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using two electrical capacitors that read electrical current 
input and return the integration results as voltage output. 
This mathematical operation has been implemented by us-
ing a nonlinear dependent current source of LTspice that 
could be programmed with an algebraic equation. LTspice 
is also capable of if-then-clause conditioning branch, which 
is used to judge the mechanical contact. 

In a similar manner, the actuator’s force (Eq. (1)) and 
the suspension’s viscoelastic restoring force (Eq. (2)) are 
modeled by the equation-defined current sources as shown 
Fig. 4(a) and (b), respectively. 
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(a)                          (b) 

Fig. 4  Equivalent circuit models for (a) parallel plate actuator 
and (b) viscoelastic suspension. 
 
3. Multi-physics Simulation Results 

The newly developed multi-physics simulator was 
cross-checked with a known electrostatic micro actuator, 
shown in Fig. 5(a), as a static verification model. This de-
vice was made of an SOI (silicon-on-insulator) and proc-
essed by the DRIE (deep reactive ion etching), and it ex-
hibited electrostatic pull-in phenomenon at 130 V, where 
the movable electrode was brought into the stopper position 
before colliding with the drive electrode. Dimensional pa-
rameters such as suspension length, width and electrode 
gap were measured in the SEM (scanning electron micro-
scope) and passed as an argument to the sub-circuit mod-
ules. As shown in Fig. 5(b), the typical hysteresis curve of 
electrostatic actuation has been clearly reproduced by the 
simulation, and the calculated pull-in voltage of 105 V 
agreed well with the experimental value, considering the 
fabrication error of the suspension width of +/-0.5 microns. 

For dynamic mode analysis, we ran the program to 
model an electrostatic actuator inserted in the Colpitts os-
cillation circuit as shown in Fig. 6. Electrostatic actuator is 
known to behave as an electrical inductor at its resonance 
frequency like a quartz oscillator, and a self oscillation at 
6.9 MHz was observed in this model. So far as the authors 
know, this is the first demonstration of a SPICE-based 
multi-physics MEMS simulation using the equa-
tion-defined nonlinear current source for actuator modeling. 
 
3. Conclusions 
   We have developed a SPICE-based multi-physics 
simulator for MEMS that could handle both electrome-
chanical and electrical simulation on a single platform. 
Equivalent circuit model for micromechanical device was 
directly synthesized from its analytical mathematic model 

by using an equation-defined nonlinear current source. 
Unlike most MEMS simulators, our methodology has 
higher degrees of freedom in adapting to various MEMS 
devices, as compared in Table I. Seamless extension to 
mask design layout is under development. 
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(a)                           (b)      . 

Fig. 5  Example (1) / transient analysis results of parallel-plate 
electrostatic actuator: (a) SEM image of sample actuator and (b) 
displacement-voltage curve. 
 

 
Fig. 6  Example (2) / multi-physics simulation on electrostatic 
silicon resonator in the Colpitts oscillation circuit. 
 

Table I  Comparison of MEMS multi-physics simulations 

This Work Ref [2]Ref [1]
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Yes

Yes

Spice

---
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DevelopmentNoNoMask Design Layout 
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