In situ Silane Surface Passivation for Gate-First Undoped AlGaN/GaN HEMTs with Minimum Current Collapse and High-Permittivity Dielectric

Xinke Liu¹, Hock-Chun Chin¹, Edwin Kim Fong Low¹, Wei Liu², Leng Seow Tan¹, and Yee-Chia Yeo¹

¹Dept. of Electrical and Computer Engineering, National University of Singapore (NUS), 117576 Singapore.

²Institute of Materials Research and Engineering, Agency for Science Technology and Research, 117602 Singapore.

Phone: +65 6516-2298, Fax: +65 6779-1103, E-mail: yeo@ieee.org

1. INTRODUCTION

Gallium nitride (GaN)-based materials are attractive for high power, high temperature, and high frequency applications [1], primarily due to their superior properties, such as large critical electric field, wide energy band gap E_G , and high electron mobility. However, one of the challenges faced by GaN High Electron Mobility Transistors (HEMTs) is current collapse, which is due to the presence of slow-acting trapping states between the gate and the drain of the device [2]. Various surface passivation techniques have been proposed using various dielectrics, such as Si₃N₄ [2], Al₂O₃ [3], etc, and different surface treatments, such as NH₃plasma treatment [4]. In our previous study, we demonstrated the effectiveness of an *in situ* surface passivation technique comprising vacuum anneal (VA) and silane (SiH₄) treatment in a metal-organic chemical vapor deposition (MOCVD) chamber, using TaN/HfAlO/n-GaN MOS capacitors [5].

In this paper, the *in situ* VA and SiH₄ surface passivation technique was first demonstrated on undoped AlGaN/GaN MOS-HEMTs. Excellent DC characteristics with minimum current collapse at 300 K were obtained. In addition, DC characteristics at high temperatures were also studied in detail.

2. DEVICE FABRICATION

The process flow for fabricating the AlGaN/GaN MOS-HEMT structure is shown in Fig. 1. A 2-inch undoped $Al_{0.25}Ga_{0.75}N(20 \text{ nm})/GaN(2 \mu m)/$ on sapphire substrate was used. After active region formation using Cl₂-based reactive ion etching (RIE), pre-gate cleaning steps comprising HCl for native oxide removal followed by (NH₄)₂S for *ex-situ* surface passivation to prevent native oxide growth [5] were performed.

After pre-gate cleaning, the wafers were quickly loaded into a MOCVD multi-chamber gate cluster system for *in situ* surface passivation: baking at 300 °C under high vacuum for decomposition of any native oxide, and SiH₄ treatment at 400 °C for surface passivation. Then, MOCVD high-*k* dielectric (HfAlO) (20 nm) was deposited. Post Deposition Anneal (PDA) at 500 °C for 60 s in N₂ ambient was then performed to improve the quality of the as-deposited HfAlO film, followed by reactive sputter deposition of TaN metal and gate patterning. Al (71 nm)/Ti (30 nm) were deposited using an E-Beam evaporator and patterned using a lift-off process. An alloying process at 650 °C for 30 s in N₂ ambient formed ohmic contacts on GaN. Finally, the fabrication process was completed with a forming gas anneal at 420 °C for 30 mins.

3. RESULTS AND DISCUSSION

Fig. 2 shows the current-voltage (*I-V*) characteristics, at different spacings, on the fabricated transfer length method (TLM) test structure which was fabricated along with the device fabrication, after annealing at 650 °C for 30 s. Excellent *I-V* characteristics were obtained, with sheet resistance (R_{sh}) of 380 Ω/\Box , and specific contact resistivity (ρ_c) of $1.5 \times 10^{-3} \Omega \text{ cm}^2$.

Fig. 3 shows the capacitance-voltage (C-V) curve (300 K) measured at 1 MHz for the fabricated MOS-HEMT. A sharp transition from depletion to accumulation is observed, demonstrating the high quality of the interface between HfAlO

and AlGaN. In accumulation, the total capacitance could be expressed as $1/C_{total} = 1/C_{HfAIO} + 1/C_{AlGaN} + 1/C_{IL}$. From the measured value of C_{total} of 66.4 pF, and the calculated C_{HfAIO} and C_{AlGaN} of 200.1 pF (thickness 20 nm, $\varepsilon_{HfAIO} = 18$) and 106.1 pF (thickness 20 nm, $\varepsilon_{AlGaN} = 9.5$), respectively, the interfacial layer (IL) thickness is deduced to be around 0.6 nm if SiO₂ is assumed for the IL ($\varepsilon_{SiO2} = 3.9$). This estimate agrees well with the IL thickness measured using TEM in our previous study [5].

I-V characteristics (300 K) of a gate first undoped AlGaN/GaN MOS-HEMT with a 2 µm gate length (L_G) are shown in Fig. 4 and 5. This MOS-HEMT has a threshold voltage (V_{th}) of - 4.9 V using a linearly scale drain current ($V_D = 1$ V), and a subthreshold Swing (*SS*) of 97 mV/decade. A maximum transconductance (g_m) of 80 mS/mm was obtained ($V_D = 5$ V). Good saturation and pinch-off device characteristics can be observed (Fig. 6). The drain current collapse at a given V_G - V_{th} is defined as the current reduction per unit increase in drain voltage, i.e. $\Delta I_D / \Delta V_D$. Fig. 7 compares the current collapse in this work with those of recently published results (depletion mode MOS-HEMTs with L_G between 0.8 and 2 µm).

Fig. 8 to 11 show the DC characteristics of undoped AlGaN/GaN MOS-HEMTs ($L_G = 2 \mu m$) measured at high temperatures. As temperature increases from 300 K to 460 K, saturation drain current (I_{Dsat}) decreases from 0.4 A/mm to 0.23 A/mm at V_G - $V_{th} = 6.5$ V, off-state current increases from 1.5×10⁻⁸ A/mm to 1.2×10⁻⁷ A/mm at V_G - $V_{th} = -2.5$ V, SS increases from 97 mV/decade to 289 mV/decade, V_{th} becomes more negative at a rate of 0.62 mV/°C, and mobility drops dramatically. I_{Dsat} reduction is mainly due to the decrease in mobility as the temperature increases.

4. SUMMARY

In summary, an *in situ* surface passivation technology comprising vacuum anneal and SiH₄ treatment was integrated in the fabrication of undoped AlGaN/GaN MOS-HEMTs. Excellent DC characteristics with minimum current collapse at room temperature were obtained. DC characteristics at high temperatures were also investigated.

Acknowledgement.

This work is supported by the Defence Science and Technology Agency (DSTA), Singapore.

References

- [1] Y. F. Wu et al., IEEE Trans. Elect. Dev., vol. 48, pp. 586, 2001.
- [2] B. M. Green et al., IEEE. Elect. Dev. Lett., vol. 21, pp. 268, 2000.
- [3] P. D. Ye et al., Appl. Phys. Lett., vol. 86, 063501, 2005.
- [4] J. H. Kim *et al.*, *SSDM* 2009, pp. 508.
- [5] X. Liu et al., SSDM 2009, pp. 1214.
- [6] Y. Yue et al., IEEE Elect. Dev. Lett., vol. 29, pp. 838, 2008.
- [7] C. W. Lin et al., ESSDERC 2009, pp. 435.
- [8] H. Chen et al., ICSICT 2008, pp. 1443.
- [9] C. Liu et al., Appl. Phys. Lett., vol. 88, 173504, 2006.
- [10]H. C. Chiu et al., J Electrochem. Soc., vol. 157, pp. H160. 2010.
- [11]S. L. Selvaraj et al., J. Electrochem. Soc., vol. 156, pp. H690, 2009.
- [12]S. Arulkumaran et al., Japan. J. Appl. Phys., vol. 44, pp. L812, 2005.
- [13]K. Balachander et al., Phys. Stat. Sol. (a), 202, No. 2, R16, 2005.
- [14]Y. Yue et al., Sci. China Series E-Tech Sci, vol. 52, pp. 2762, 2009.

Fig. 1. (a) Left: Process flow for fabrication of the AlGaN/GaN MOS-HEMT. (b) Right: Schematic view of the AlGaN/GaN MOS-HEMT structure.

Fig. 3. Measured Capacitance-Voltage (C-V) characteristic of the AlGaN/GaN MOS-HEMT with VA and SiH₄ treatment.

Fig. 6. I_D - V_D characteristics of AlGaN/GaN MOS-HEMT with VA and SiH4 treatment.

Fig. 9. Temperature dependence of SS characteristics of AlGaN/GaN MOS-HEMTs with VA and SiH_4 treatment at various temperatures (300 K, 340 K, 380K, 420 K and 460 K).

HfAlO

Dielectric

Fig. 4. I_D-V_G output characteristics of AlGaN/ GaN MOS-HEMT with VA and SiH4 treatment. Low SS of 97 mV/decade was achieved at 300 K.

Fig. 7. Current collapse comparison of our work with recent published results.

Fig. 10. Temperature dependence of V_{th} characteristics of AlGaN/GaN MOS-HEMTs with VA and SiH4 treatment at various temperatures (300 K, 340 K, 380K, 420 K and 460 K).

Fig. 2. Current-voltage (I-V) characteristics at different contact spacings on the TLM structure after annealing at 650°C for 30 s

Fig. 5. g_m - V_G transfer characteristics of AlGaN/GaN MOS-HEMTs with VA and SiH4 treatment.

Fig. 8. I_D - V_G characteristics of AlGaN/GaN MOS-HEMT with VA and SiH4 treatment at various temperatures (300 K, 340 K, 380K, 420 K and 460 K).

Fig. 11. Drift mobility as a function of sheet carrier density at various temperatures (300 K, 340 K, 380K, 420 K and 460 K).