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Fig. 2  Cross-sectional TEM image (bright field) of the FLC 
poly-Si film.  Straight and dashed arrows indicate the parts 
of large-grain and fine-grain regions, respectively.  EBD 
patterns recorded at fine-grain, large-grain, and amorphous 
regions are also shown. 
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1. Introduction 

Thin-film polycrystalline silicon (poly-Si) films have 
been expected as a next-generation solar cell material.  
Solar cells with a high conversion efficiency (>10%) have 
been demonstrated using poly-Si films formed by sol-
id-phase crystallization (SPC) of precursor a-Si films 
through hour-order furnace annealing [1].  The application 
of a rapid crystallization technique would lead to higher 
throughput, and also enables us to use low-cost substrates 
with poor thermal tolerance. 

Flash lamp annealing (FLA) is an annealing technique 
using a millisecond-order pulse light, and can crystallize 
micrometer-order-thick a-Si films without heating of whole 
glass substrates due to its appropriate annealing duration.  
We have demonstrated that FLA can form 4.5-µm-thick 
poly-Si films even on soda lime glass substrates [2], and 
the flash-lamp-crystallized (FLC) poly-Si films can be 
processed to solar cells demonstrating rectifying and pho-
tovoltaic properties [3].  We have also clarified that the 
flash-lamp-induced crystallization progresses laterally 
through explosive crystallization (EC), autocatalytic crys-
tallization associated with the liberation of latent heat [4].  
The EC induced by FLA leaves behind periodic structures 
along the lateral crystallization directions [5].  The FLC 
poly-Si films have two regions with different features such 
as grain size and surface morphology, which form the pe-
riodic structures [5].  For the further understanding of 
these microstructures, we have precisely investigated the 
microstructures of FLC poly-Si films by means of 
cross-sectional transmission electron microscopy (TEM). 

 
2. Experimental procedure 

Cr adhesion films of 60 nm in thickness were first 
sputtered on quartz glass substrates of 20×20×0.7 mm3 in 
size, followed by the deposition of 4.5-µm-thick a-Si films 
by catalytic chemical vapor deposition (Cat-CVD).  FLA 
was performed under pulse duration of 5 ms and irradiance 
of approximately 20 J/cm2.  Only one shot of flash irradia-
tion is performed for one sample.  We selected a partially 
crystallized Si film sample for cross-sectional TEM obser-
vation.  The surface appearance of the FLC poly-Si film is 
shown in Fig. 1, indicating that lateral crystallization is 
ignited at film edges and crystallized area expands towards 
center.  A cross section for the TEM observation was 
formed at a a-Si/c-Si boundary.  According to the results 

of Raman spectroscopy, the crystallized parts have a high 
crystalline fraction close to unity, which is consistent with 
those previously reported [2,5]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

3. Results and discussion 
Figure 2 shows the low-magnification cross-sectional 

TEM image of the FLC poly-Si film.  One can clearly see 
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Fig. 1  Surface appearance of a FLC poly-Si film used for 
TEM observation.  The position of cross section is also indi-
cated.
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Fig. 3  TEM images of the fine-grain region of the FLC 
poly-Si film: (a) bright-field image, (b) dark-field image, (c) 
lattice image. 
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Fig. 4  TEM images of the large-grain region of the FLC 
poly-Si film: (a) bright-field image, (b) dark-field image, (c) 
lattice image. 

two characteristic regions in the image: a region containing 
surface projections and relatively large, stretched grains 
with sizes of more than 100 nm, and a region with flat sur-
face and containing no 100-nm-sized large grains.  Elec-
tron beam diffraction (EBD) patterns of the two regions, 
also shown in Fig. 2, reveal that the former has higher de-
gree of orientation than the latter.  The EBD pattern of the 
position c, approximately 1 μm distant from the a-Si/c-Si 
boundary, indicates a complete halo ring, showing quite 
abrupt phase change at the boundary. 

Figures 3(a) and (b) show bright- and dark-field images 
of the fine-grain region of the FLC poly-Si film.  These 
images clearly show the existence of 10-nm-sized fine 
grains.  Figure 3(c) shows the lattice image of the 
fine-grain region.  One can confirm individual grains in 
the image, and amorphous phase is hardly seen between 
them.  These results indicate that the fine-grain regions 

consist of randomly-oriented, densely-packed fine grains 
with little amorphous phase. 

Figures 4(a) and (b) show bright- and dark-field images 
of the large-grain region of the FLC poly-Si film.  In con-
trast to the fine-grain region, large-sized grains are clearly 
seen.  The direction of the grain stretching probably cor-
responds to the direction of thermal gradient during EC, 
and liquid-phase epitaxy (LPE) is most likely as their for-
mation mechanism.  Figure 4(c) shows the lattice image of 
the large-grain region of the FLC poly-Si film.  No clear 
grain boundaries are seen in the image, which is also a clear 
indication of the formation of large grains. 

We have mentioned the formation mechanism of the 
two regions in the previous paper: the fine-grain region is 
formed only through solid-phase nucleation (SPN), whereas 
the large grain region is governed by both SPN and LPE [5].  
The results of TEM images are completely consistent with 
the proposed crystallization mechanisms.  In the point of 
view of solar cell application, the FLC poly-Si with high 
crystalline fraction would lead to the effective transport of 
photogenerated carriers, while the passivation of grain 
boundaries would be one of the most important issues to 
realize high-efficiency solar cells using FLC poly-Si films 
because of the absence of a-Si tissues passivating grains, 
unlike CVD microcrystalline Si films. 
 
4. Conclusions 
   TEM observations have clarified the difference of the 
microstructures of fine-grain and large-grain regions of 
FLC poly-Si films.  Fine-grain region consists of random-
ly oriented, densely-packed fine grains of approximately 10 
nm in size, whereas large-grain regions have stretched 
grains, probably formed through liquid-phase epitaxy. 
 
Acknowledgements 
   The authors acknowledge T. Owada and T. Yokomori of 
Ushio Inc. for their expert operation of FLA.  This work was 
supported by JST PRESTO program. 
 
References 
[1] M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, 

Proceedings of the 22nd European Photovoltaic Solar Energy 
Conference (2007) 1783, and references therein. 

[2] K. Ohdaira, T. Fujiwara, Y. Endo, S. Nishizaki, and H. Mat-
sumura, Jpn. J. Appl. Phys. 47 (2008) 8239. 

[3] K. Ohdaira, T. Fujiwara, Y. Endo, K. Shiba, H. Takemoto, and 
H. Matsumura, Jpn. J. Appl. Phys. 49 (2010) 04DP04. 

[4] H. -D. Geiler, E. Glaser, G. Götz, and M. Wagner, J. Appl. 
Phys. 59 (1986) 3091. 

[5] K. Ohdaira, T. Fujiwara, Y. Endo, S. Nishizaki, and H. Mat-
sumura, J. Appl. Phys. 106 (2009) 044907. 

-1242-

 


